From Dark and Darker Wiki

Revision as of 06:28, 1 September 2024 by Hiimray (talk | contribs) (→‎Stats: Added some bits about which stat sources are viewable from the Lobby)

Information is up to date! Hover for more details.Stats Data last updated on: Patch:6.6#Hotfix 69-2.
Dark and Darker is currently on update: Patch:6.6#Hotfix 69-2.

Stats Damage Spell Restoration Luck
Enchantments Health Impact Power Footstep Sound
Healing Action/Interaction/Cast Speed Silence
Shield Looted Handled Supplied Experience
Spells

Stats

Stats are primarily modified through the gear your character has equipped. Weapons/utilities only modify your character while held. For example, holding a Main-Hand and Off-Hand weapon in the first weapon slot will give each other weapon their stats, but neither will benefit from the stats of the weapon(s) in the second slot. Similarly, the bonuses from a Flute are only granted while wielding the Flute. Stats from these sources will not be reflected in the Lobby.

Stats may also be modified by perks, buffs, and debuffs. Stats from perks will be reflected in the Lobby only if those stats are applied unconditionally. Stats from conditional perks (as well as buffs and debuffs) will not be viewable from the Lobby.

See exact changes to Stats here Patch:6.4#Stat_Curve_Changes

Charts

Charts are created using the data points directly taken from the game. Therefore, if there is a mismatch between chart and the in game display, it is better to look at chart info.

For example, even though the formula might give 32.5, in game the display might get rounded to 33.

Attributes

Stats that come from character's attributes.

Strength

Physical Power

Physical Power governs your Physical Power Bonus.

Strength governs your Physical Power.

0 Strength starts at 0 Physical Power.

  • 0 -> 0
  • 0 to 100 = 1 each, up to 100

LaTeX Formula

Can be pasted into Desmos or other LaTeX editors for quick use of the equation.

Triple click to select all. Note: Some browsers will add an extra return carriage (line end) after the formula. Remove it before pasting for best results.

P_{hysicalPower}(S_{trength})=\left\{0 \le S_{trength}<100:0+1\left|S_{trength}-0\right|\right\}

See Example for how to use.


Physical Power Bonus

Also known as Physical Damage Bonus, Physical Power Bonus governs the potency of your physical damage dealing weapons, utility items, and abilities.

Physical Power governs your Physical Power Bonus.

0 Physical Power starts at -80% Physical Power Bonus.

  • 0 -> -80%
  • 0 to 5 = 10% each, up to -30%
  • 5 to 7 = 5% each, up to -20%
  • 7 to 11 = 3% each, up to -8%
  • 11 to 15 = 2% each, up to 0%
  • 15 to 50 = 1% each, up to 35%
  • 50 to 100 = 0.5% each, up to 60%

LaTeX Formula

Can be pasted into Desmos or other LaTeX editors for quick use of the equation.

Triple click to select all. Note: Some browsers will add an extra return carriage (line end) after the formula. Remove it before pasting for best results.

P_{hysicalPowerBonus}(P_{hysicalPower})=\left\{0 \le P_{hysicalPower}<5:-0.8+0.1\left|P_{hysicalPower}-0\right|,5 \le P_{hysicalPower}<7:-0.3+0.05\left|P_{hysicalPower}-5\right|,7 \le P_{hysicalPower}<11:-0.2+0.03\left|P_{hysicalPower}-7\right|,11 \le P_{hysicalPower}<15:-0.08+0.02\left|P_{hysicalPower}-11\right|,15 \le P_{hysicalPower}<50:0+0.01\left|P_{hysicalPower}-15\right|,50 \le P_{hysicalPower}<100:0.35+0.005\left|P_{hysicalPower}-50\right|\right\}

See Example for how to use.

Lower limit of -100%.

Max Health from Strength

Max Health determines your characters maximum Health.

See the Hybrid stat Max Health for more.


Vigor

Max Health from Vigor

Max Health determines your characters maximum Health.

See the Hybrid stat Max Health for more.


Health Recovery

Affects the rate at which you restore health when Resting, but not when using Bandages.

Health Recovered per tick = Base Recovery * (1 + Health Recovery Bonus)

For example, a Barbarian resting with 95% Health Recovery Bonus will recover

Health Recovered every 2s = 1 * (1 + .95) = 1.95 Health

Vigor governs your Health Recovery.

0 Vigor starts at -55% Health Recovery.

  • 0 -> -55%
  • 0 to 5 = 5% each, up to -30%
  • 5 to 15 = 3% each, up to 0%
  • 15 to 25 = 7% each, up to 70%
  • 25 to 35 = 5% each, up to 120%
  • 35 to 84 = 2% each, up to 218%
  • 84 to 85 = 1% each, up to 219%
  • 85 to 86 = 3% each, up to 222%
  • 86 to 100 = 2% each, up to 250%

LaTeX Formula

Can be pasted into Desmos or other LaTeX editors for quick use of the equation.

Triple click to select all. Note: Some browsers will add an extra return carriage (line end) after the formula. Remove it before pasting for best results.

H_{ealthRecovery}(V_{igor})=\left\{0 \le V_{igor}<5:-0.55+0.05\left|V_{igor}-0\right|,5 \le V_{igor}<15:-0.3+0.03\left|V_{igor}-5\right|,15 \le V_{igor}<25:0+0.07\left|V_{igor}-15\right|,25 \le V_{igor}<35:0.7+0.05\left|V_{igor}-25\right|,35 \le V_{igor}<84:1.2+0.02\left|V_{igor}-35\right|,84 \le V_{igor}<85:2.18+0.01\left|V_{igor}-84\right|,85 \le V_{igor}<86:2.19+0.03\left|V_{igor}-85\right|,86 \le V_{igor}<100:2.22+0.02\left|V_{igor}-86\right|\right\}

See Example for how to use.



Agility

Action Speed from Agility

Action Speed governs the speed at which you interact with your weapons, meaning stowing, swapping, reloading or attacking with weapons, as well as the speed of usage of consumables.

See the Hybrid stat Action Speed for more.

Move Speed

Move Speed governs the speed at which your character moves. This stat is also directly influenced by wearing gear. Every 1 point in Move Speed is equal to 0.3333...% Move Speed. The default Move Speed for each class is 300, which translates to 100% Move Speed, with penalties or bonuses provided based on Agility. Performing certain actions, such as attacking, or moving in certain directions will also affect Move Speed. Backwards = 60%, Crouch = 65%, Walk = 40%.

Agility governs your Move Speed.

0 Agility starts at -10 Move Speed.

  • 0 -> -10
  • 0 to 10 = 0.5 each, up to -5
  • 10 to 15 = 1 each, up to 0
  • 15 to 75 = 0.75 each, up to 45
  • 75 to 100 = 0.5 each, up to 57.5

LaTeX Formula

Can be pasted into Desmos or other LaTeX editors for quick use of the equation.

Triple click to select all. Note: Some browsers will add an extra return carriage (line end) after the formula. Remove it before pasting for best results.

M_{oveSpeed}(A_{gility})=\left\{0 \le A_{gility}<10:-10+0.5\left|A_{gility}-0\right|,10 \le A_{gility}<15:-5+1\left|A_{gility}-10\right|,15 \le A_{gility}<75:0+0.75\left|A_{gility}-15\right|,75 \le A_{gility}<100:45+0.5\left|A_{gility}-75\right|\right\}

See Example for how to use.


Hard capped to 330 Movement speed

Regular Interaction Speed from Agility

Regular Interaction Speed governs the speed at which you interact with objects/mechanisms in the dungeon.

See the Hybrid stat Regular Interaction Speed for more.

Dexterity

Action Speed from Dexterity

Action Speed governs the speed at which you interact with your weapons, meaning stowing, swapping, reloading or attacking with weapons, as well as the speed of usage of consumables.

See the Hybrid stat Action Speed for more.

Manual Dexterity

Manual Dexterity determines how quickly Bard plays an instrument.

Dexterity governs your Manual Dexterity.

0 Dexterity starts at -15% Manual Dexterity.

  • 0 -> -15%
  • 0 to 15 = 1% each, up to 0%
  • 15 to 23 = 3% each, up to 24%
  • 23 to 31 = 2% each, up to 40%
  • 31 to 37 = 1% each, up to 46%
  • 37 to 45 = 0.5% each, up to 50%
  • 45 to 95 = 0.1% each, up to 55%
  • 95 to 100 = 0% each, up to 55%

LaTeX Formula

Can be pasted into Desmos or other LaTeX editors for quick use of the equation.

Triple click to select all. Note: Some browsers will add an extra return carriage (line end) after the formula. Remove it before pasting for best results.

M_{anualDexterity}(D_{exterity})=\left\{0 \le D_{exterity}<15:-0.15+0.01\left|D_{exterity}-0\right|,15 \le D_{exterity}<23:0+0.03\left|D_{exterity}-15\right|,23 \le D_{exterity}<31:0.24+0.02\left|D_{exterity}-23\right|,31 \le D_{exterity}<37:0.4+0.01\left|D_{exterity}-31\right|,37 \le D_{exterity}<45:0.46+0.005\left|D_{exterity}-37\right|,45 \le D_{exterity}<95:0.5+0.001\left|D_{exterity}-45\right|,95 \le D_{exterity}<100:0.55+0\left|D_{exterity}-95\right|\right\}

See Example for how to use.


Capped to 50%.

Item Equip Speed

Item Equip Speed adjusts the speed at which you equip all Armors, Ranged Weapons, and Throwable/Percussion/"explosive Light Source" Utility items.

All other items such as Jewelry, Melee Weapons, Shields, and Consumable/Drink/"non-exploding Light Source" Utility items are instantly equipped.

Dexterity governs your Item Equip Speed.

0 Dexterity starts at -95% Item Equip Speed.

  • 0 -> -95%
  • 0 to 1 = 0% each, up to -95%
  • 1 to 2 = 4% each, up to -91%
  • 2 to 15 = 7% each, up to 0%
  • 15 to 35 = 5% each, up to 100%
  • 35 to 70 = 2% each, up to 170%
  • 70 to 100 = 1% each, up to 200%

LaTeX Formula

Can be pasted into Desmos or other LaTeX editors for quick use of the equation.

Triple click to select all. Note: Some browsers will add an extra return carriage (line end) after the formula. Remove it before pasting for best results.

I_{temEquipSpeed}(D_{exterity})=\left\{0 \le D_{exterity}<1:-0.95+0\left|D_{exterity}-0\right|,1 \le D_{exterity}<2:-0.95+0.04\left|D_{exterity}-1\right|,2 \le D_{exterity}<15:-0.91+0.07\left|D_{exterity}-2\right|,15 \le D_{exterity}<35:0+0.05\left|D_{exterity}-15\right|,35 \le D_{exterity}<70:1+0.02\left|D_{exterity}-35\right|,70 \le D_{exterity}<100:1.7+0.01\left|D_{exterity}-70\right|\right\}

See Example for how to use.


Will

Magical Power

Also known as Magic Power, Magical Power governs your Magic Power Bonus.

Will governs your Magical Power.

0 Will starts at 0 Magical Power.

  • 0 -> 0
  • 0 to 100 = 1 each, up to 100

LaTeX Formula

Can be pasted into Desmos or other LaTeX editors for quick use of the equation.

Triple click to select all. Note: Some browsers will add an extra return carriage (line end) after the formula. Remove it before pasting for best results.

M_{agicalPower}(W_{ill})=\left\{0 \le W_{ill}<100:0+1\left|W_{ill}-0\right|\right\}

See Example for how to use.


Magic Power Bonus

Also known as Magical Damage Bonus, though contrary to this alternative name, it affects Healing too. Magic Power bonus governs the potency of your magical spells, magical damage dealing abilities and magical healing abilities.

Magical Power governs your Magical Power Bonus.

0 Magical Power starts at -90% Magical Power Bonus.

  • 0 -> -90%
  • 0 to 1 = 0% each, up to -90%
  • 1 to 5 = 10% each, up to -50%
  • 5 to 15 = 5% each, up to 0%
  • 15 to 21 = 2.5% each, up to 15%
  • 21 to 40 = 2% each, up to 53%
  • 40 to 50 = 1% each, up to 63%
  • 50 to 100 = 0.5% each, up to 88%

LaTeX Formula

Can be pasted into Desmos or other LaTeX editors for quick use of the equation.

Triple click to select all. Note: Some browsers will add an extra return carriage (line end) after the formula. Remove it before pasting for best results.

M_{agicalPowerBonus}(M_{agicalPower})=\left\{0 \le M_{agicalPower}<1:-0.9+0\left|M_{agicalPower}-0\right|,1 \le M_{agicalPower}<5:-0.9+0.1\left|M_{agicalPower}-1\right|,5 \le M_{agicalPower}<15:-0.5+0.05\left|M_{agicalPower}-5\right|,15 \le M_{agicalPower}<21:0+0.025\left|M_{agicalPower}-15\right|,21 \le M_{agicalPower}<40:0.15+0.02\left|M_{agicalPower}-21\right|,40 \le M_{agicalPower}<50:0.53+0.01\left|M_{agicalPower}-40\right|,50 \le M_{agicalPower}<100:0.63+0.005\left|M_{agicalPower}-50\right|\right\}

See Example for how to use.


Magical Resistance

Magic Resistance governs your Magical Damage Reduction.

Will governs your Magic Resistance.

0 Will starts at -20 Magic Resistance.

  • 0 -> -20
  • 0 to 5 = 4 each, up to 0
  • 5 to 15 = 3 each, up to 30
  • 15 to 33 = 4 each, up to 102
  • 33 to 48 = 3 each, up to 147
  • 48 to 58 = 2 each, up to 167
  • 58 to 100 = 1 each, up to 209

LaTeX Formula

Can be pasted into Desmos or other LaTeX editors for quick use of the equation.

Triple click to select all. Note: Some browsers will add an extra return carriage (line end) after the formula. Remove it before pasting for best results.

M_{agicResistance}(W_{ill})=\left\{0 \le W_{ill}<5:-20+4\left|W_{ill}-0\right|,5 \le W_{ill}<15:0+3\left|W_{ill}-5\right|,15 \le W_{ill}<33:30+4\left|W_{ill}-15\right|,33 \le W_{ill}<48:102+3\left|W_{ill}-33\right|,48 \le W_{ill}<58:147+2\left|W_{ill}-48\right|,58 \le W_{ill}<100:167+1\left|W_{ill}-58\right|\right\}

See Example for how to use.

Magical Damage Reduction

Magical Damage Reduction governs your resistance to magical damage dealing weapons, spells and projectiles.

Magic Resistance governs your Magical Damage Reduction.

-300 Magic Resistance starts at -595% Magical Damage Reduction.

  • -300 -> -595%
  • -300 to -15 = 2% each, up to -25%
  • -15 to 10 = 1% each, up to 0%
  • 10 to 250 = 0.25% each, up to 60%
  • 250 to 350 = 0.2% each, up to 80%
  • 350 to 500 = 0.1% each, up to 95%

LaTeX Formula

Can be pasted into Desmos or other LaTeX editors for quick use of the equation.

Triple click to select all. Note: Some browsers will add an extra return carriage (line end) after the formula. Remove it before pasting for best results.

M_{agicalDamageReduction}(M_{agicResistance})=\left\{-300 \le M_{agicResistance}<-15:-5.95+0.02\left|M_{agicResistance}--300\right|,-15 \le M_{agicResistance}<10:-0.25+0.01\left|M_{agicResistance}--15\right|,10 \le M_{agicResistance}<250:0+0.003\left|M_{agicResistance}-10\right|,250 \le M_{agicResistance}<350:0.6+0.002\left|M_{agicResistance}-250\right|,350 \le M_{agicResistance}<500:0.8+0.001\left|M_{agicResistance}-350\right|\right\}

See Example for how to use.


Magical Damage Reduction is capped to 75%

Buff Duration

Buff Duration modifies the duration of any temporary beneficial status effects you have.

Buff Duration does not modify buffs you apply to others.

Will governs your Buff Duration.

0 Will starts at -80% Buff Duration.

  • 0 -> -80%
  • 0 to 5 = 10% each, up to -30%
  • 5 to 7 = 5% each, up to -20%
  • 7 to 11 = 3% each, up to -8%
  • 11 to 15 = 2% each, up to 0%
  • 15 to 50 = 1% each, up to 35%
  • 50 to 100 = 0.5% each, up to 60%

LaTeX Formula

Can be pasted into Desmos or other LaTeX editors for quick use of the equation.

Triple click to select all. Note: Some browsers will add an extra return carriage (line end) after the formula. Remove it before pasting for best results.

B_{uffDuration}(W_{ill})=\left\{0 \le W_{ill}<5:-0.8+0.1\left|W_{ill}-0\right|,5 \le W_{ill}<7:-0.3+0.05\left|W_{ill}-5\right|,7 \le W_{ill}<11:-0.2+0.03\left|W_{ill}-7\right|,11 \le W_{ill}<15:-0.08+0.02\left|W_{ill}-11\right|,15 \le W_{ill}<50:0+0.01\left|W_{ill}-15\right|,50 \le W_{ill}<100:0.35+0.005\left|W_{ill}-50\right|\right\}

See Example for how to use.


Debuff Duration

Debuff Duration modifies the duration of temporary negative status effects; a negative value will shorten the duration, which is beneficial, and vise versa.

Debuff Duration does not modify debuffs you apply to others.

Will governs your Debuff Duration.

0 Will starts at 400% Debuff Duration.

  • 0 -> 400%
  • 0 to 1 = -166.7% each, up to 233.3%
  • 1 to 2 = -83.3% each, up to 150%
  • 2 to 3 = -50% each, up to 100%
  • 3 to 4 = -33.3% each, up to 66.7%
  • 4 to 5 = -23.8% each, up to 42.9%
  • 5 to 6 = -9.6% each, up to 33.3%
  • 6 to 7 = -8.3% each, up to 25%
  • 7 to 8 = -4.5% each, up to 20.5%
  • 8 to 9 = -4.2% each, up to 16.3%
  • 9 to 10 = -3.9% each, up to 12.4%
  • 10 to 11 = -3.7% each, up to 8.7%
  • 11 to 12 = -2.3% each, up to 6.4%
  • 12 to 14 = -2.2% each, up to 2%
  • 14 to 15 = -2% each, up to 0%
  • 15 to 17 = -1% each, up to -2%
  • 17 to 19 = -0.9% each, up to -3.8%
  • 19 to 20 = -1% each, up to -4.8%
  • 20 to 21 = -0.9% each, up to -5.7%
  • 21 to 22 = -0.8% each, up to -6.5%
  • 22 to 24 = -0.9% each, up to -8.3%
  • 24 to 29 = -0.8% each, up to -12.3%
  • 29 to 30 = -0.7% each, up to -13%
  • 30 to 31 = -0.8% each, up to -13.8%
  • 31 to 32 = -0.7% each, up to -14.5%
  • 32 to 33 = -0.8% each, up to -15.3%
  • 33 to 36 = -0.7% each, up to -17.4%
  • 36 to 37 = -0.6% each, up to -18%
  • 37 to 39 = -0.7% each, up to -19.4%
  • 39 to 41 = -0.6% each, up to -20.6%
  • 41 to 42 = -0.7% each, up to -21.3%
  • 42 to 46 = -0.6% each, up to -23.7%
  • 46 to 47 = -0.5% each, up to -24.2%
  • 47 to 49 = -0.6% each, up to -25.4%
  • 49 to 50 = -0.5% each, up to -25.9%
  • 50 to 52 = -0.3% each, up to -26.5%
  • 52 to 53 = -0.2% each, up to -26.7%
  • 53 to 55 = -0.3% each, up to -27.3%
  • 55 to 56 = -0.2% each, up to -27.5%
  • 56 to 58 = -0.3% each, up to -28.1%
  • 58 to 59 = -0.2% each, up to -28.3%
  • 59 to 60 = -0.3% each, up to -28.6%
  • 60 to 61 = -0.2% each, up to -28.8%
  • 61 to 62 = -0.3% each, up to -29.1%
  • 62 to 63 = -0.2% each, up to -29.3%
  • 63 to 64 = -0.3% each, up to -29.6%
  • 64 to 65 = -0.2% each, up to -29.8%
  • 65 to 66 = -0.3% each, up to -30.1%
  • 66 to 67 = -0.2% each, up to -30.3%
  • 67 to 68 = -0.3% each, up to -30.6%
  • 68 to 70 = -0.2% each, up to -31%
  • 70 to 71 = -0.3% each, up to -31.3%
  • 71 to 73 = -0.2% each, up to -31.7%
  • 73 to 74 = -0.3% each, up to -32%
  • 74 to 76 = -0.2% each, up to -32.4%
  • 76 to 77 = -0.3% each, up to -32.7%
  • 77 to 80 = -0.2% each, up to -33.3%
  • 80 to 81 = -0.3% each, up to -33.6%
  • 81 to 86 = -0.2% each, up to -34.6%
  • 86 to 87 = -0.3% each, up to -34.9%
  • 87 to 100 = -0.2% each, up to -37.5%

LaTeX Formula

Can be pasted into Desmos or other LaTeX editors for quick use of the equation.

Triple click to select all. Note: Some browsers will add an extra return carriage (line end) after the formula. Remove it before pasting for best results.

D_{ebuffDuration}(W_{ill})=\left\{0 \le W_{ill}<1:4+-1.667\left|W_{ill}-0\right|,1 \le W_{ill}<2:2.333+-0.833\left|W_{ill}-1\right|,2 \le W_{ill}<3:1.5+-0.5\left|W_{ill}-2\right|,3 \le W_{ill}<4:1+-0.333\left|W_{ill}-3\right|,4 \le W_{ill}<5:0.667+-0.238\left|W_{ill}-4\right|,5 \le W_{ill}<6:0.429+-0.096\left|W_{ill}-5\right|,6 \le W_{ill}<7:0.333+-0.083\left|W_{ill}-6\right|,7 \le W_{ill}<8:0.25+-0.045\left|W_{ill}-7\right|,8 \le W_{ill}<9:0.205+-0.042\left|W_{ill}-8\right|,9 \le W_{ill}<10:0.163+-0.039\left|W_{ill}-9\right|,10 \le W_{ill}<11:0.124+-0.037\left|W_{ill}-10\right|,11 \le W_{ill}<12:0.087+-0.023\left|W_{ill}-11\right|,12 \le W_{ill}<14:0.064+-0.022\left|W_{ill}-12\right|,14 \le W_{ill}<15:0.02+-0.02\left|W_{ill}-14\right|,15 \le W_{ill}<17:0+-0.01\left|W_{ill}-15\right|,17 \le W_{ill}<19:-0.02+-0.009\left|W_{ill}-17\right|,19 \le W_{ill}<20:-0.038+-0.01\left|W_{ill}-19\right|,20 \le W_{ill}<21:-0.048+-0.009\left|W_{ill}-20\right|,21 \le W_{ill}<22:-0.057+-0.008\left|W_{ill}-21\right|,22 \le W_{ill}<24:-0.065+-0.009\left|W_{ill}-22\right|,24 \le W_{ill}<29:-0.083+-0.008\left|W_{ill}-24\right|,29 \le W_{ill}<30:-0.123+-0.007\left|W_{ill}-29\right|,30 \le W_{ill}<31:-0.13+-0.008\left|W_{ill}-30\right|,31 \le W_{ill}<32:-0.138+-0.007\left|W_{ill}-31\right|,32 \le W_{ill}<33:-0.145+-0.008\left|W_{ill}-32\right|,33 \le W_{ill}<36:-0.153+-0.007\left|W_{ill}-33\right|,36 \le W_{ill}<37:-0.174+-0.006\left|W_{ill}-36\right|,37 \le W_{ill}<39:-0.18+-0.007\left|W_{ill}-37\right|,39 \le W_{ill}<41:-0.194+-0.006\left|W_{ill}-39\right|,41 \le W_{ill}<42:-0.206+-0.007\left|W_{ill}-41\right|,42 \le W_{ill}<46:-0.213+-0.006\left|W_{ill}-42\right|,46 \le W_{ill}<47:-0.237+-0.005\left|W_{ill}-46\right|,47 \le W_{ill}<49:-0.242+-0.006\left|W_{ill}-47\right|,49 \le W_{ill}<50:-0.254+-0.005\left|W_{ill}-49\right|,50 \le W_{ill}<52:-0.259+-0.003\left|W_{ill}-50\right|,52 \le W_{ill}<53:-0.265+-0.002\left|W_{ill}-52\right|,53 \le W_{ill}<55:-0.267+-0.003\left|W_{ill}-53\right|,55 \le W_{ill}<56:-0.273+-0.002\left|W_{ill}-55\right|,56 \le W_{ill}<58:-0.275+-0.003\left|W_{ill}-56\right|,58 \le W_{ill}<59:-0.281+-0.002\left|W_{ill}-58\right|,59 \le W_{ill}<60:-0.283+-0.003\left|W_{ill}-59\right|,60 \le W_{ill}<61:-0.286+-0.002\left|W_{ill}-60\right|,61 \le W_{ill}<62:-0.288+-0.003\left|W_{ill}-61\right|,62 \le W_{ill}<63:-0.291+-0.002\left|W_{ill}-62\right|,63 \le W_{ill}<64:-0.293+-0.003\left|W_{ill}-63\right|,64 \le W_{ill}<65:-0.296+-0.002\left|W_{ill}-64\right|,65 \le W_{ill}<66:-0.298+-0.003\left|W_{ill}-65\right|,66 \le W_{ill}<67:-0.301+-0.002\left|W_{ill}-66\right|,67 \le W_{ill}<68:-0.303+-0.003\left|W_{ill}-67\right|,68 \le W_{ill}<70:-0.306+-0.002\left|W_{ill}-68\right|,70 \le W_{ill}<71:-0.31+-0.003\left|W_{ill}-70\right|,71 \le W_{ill}<73:-0.313+-0.002\left|W_{ill}-71\right|,73 \le W_{ill}<74:-0.317+-0.003\left|W_{ill}-73\right|,74 \le W_{ill}<76:-0.32+-0.002\left|W_{ill}-74\right|,76 \le W_{ill}<77:-0.324+-0.003\left|W_{ill}-76\right|,77 \le W_{ill}<80:-0.327+-0.002\left|W_{ill}-77\right|,80 \le W_{ill}<81:-0.333+-0.003\left|W_{ill}-80\right|,81 \le W_{ill}<86:-0.336+-0.002\left|W_{ill}-81\right|,86 \le W_{ill}<87:-0.346+-0.003\left|W_{ill}-86\right|,87 \le W_{ill}<100:-0.349+-0.002\left|W_{ill}-87\right|\right\}

See Example for how to use.


Debuff Duration has a lower cap of -95%, meaning at minimum a debuff can last 1/20th of its base duration.

Magical Interaction Speed

Magical Interaction Speed affects the speed with which the player interacts with magical objects, such as Shrines and Portals. See Action/Interaction/Cast_Speed for more.

Will governs your Magical Interaction Speed.

0 Will starts at -75% Magical Interaction Speed.

  • 0 -> -75%
  • 0 to 15 = 5% each, up to 0%
  • 15 to 25 = 7% each, up to 70%
  • 25 to 35 = 5% each, up to 120%
  • 35 to 84 = 2% each, up to 218%
  • 84 to 85 = 1% each, up to 219%
  • 85 to 86 = 3% each, up to 222%
  • 86 to 100 = 2% each, up to 250%

LaTeX Formula

Can be pasted into Desmos or other LaTeX editors for quick use of the equation.

Triple click to select all. Note: Some browsers will add an extra return carriage (line end) after the formula. Remove it before pasting for best results.

M_{agicalInteractionSpeed}(W_{ill})=\left\{0 \le W_{ill}<15:-0.75+0.05\left|W_{ill}-0\right|,15 \le W_{ill}<25:0+0.07\left|W_{ill}-15\right|,25 \le W_{ill}<35:0.7+0.05\left|W_{ill}-25\right|,35 \le W_{ill}<84:1.2+0.02\left|W_{ill}-35\right|,84 \le W_{ill}<85:2.18+0.01\left|W_{ill}-84\right|,85 \le W_{ill}<86:2.19+0.03\left|W_{ill}-85\right|,86 \le W_{ill}<100:2.22+0.02\left|W_{ill}-86\right|\right\}

See Example for how to use.


Note that the Debuff Duration Bonus enchant converts into a negative Debuff Duration, decreasing the duration of debuffs on you.

Durations are not rounded and last their exact amount. However, actions that are performed in intervals, like Damage/Healing [time], are rounded down to the nearest integer, resulting in thresholds that players may want to take advantage of.

Knowledge

Spell Casting Speed

Spell Casting Speed governs the speed at which you cast magical spells. See Action/Interaction/Cast_Speed for more.

Knowledge governs your Spell Casting Speed.

0 Knowledge starts at -60% Spell Casting Speed.

  • 0 -> -60%
  • 0 to 5 = 5% each, up to -35%
  • 5 to 10 = 4% each, up to -15%
  • 10 to 20 = 3% each, up to 15%
  • 20 to 50 = 2.5% each, up to 90%
  • 50 to 80 = 2% each, up to 150%
  • 80 to 100 = 1.5% each, up to 180%

LaTeX Formula

Can be pasted into Desmos or other LaTeX editors for quick use of the equation.

Triple click to select all. Note: Some browsers will add an extra return carriage (line end) after the formula. Remove it before pasting for best results.

S_{pellCastingSpeed}(K_{nowledge})=\left\{0 \le K_{nowledge}<5:-0.6+0.05\left|K_{nowledge}-0\right|,5 \le K_{nowledge}<10:-0.35+0.04\left|K_{nowledge}-5\right|,10 \le K_{nowledge}<20:-0.15+0.03\left|K_{nowledge}-10\right|,20 \le K_{nowledge}<50:0.15+0.025\left|K_{nowledge}-20\right|,50 \le K_{nowledge}<80:0.9+0.02\left|K_{nowledge}-50\right|,80 \le K_{nowledge}<100:1.5+0.015\left|K_{nowledge}-80\right|\right\}

See Example for how to use.


Spell Casting Time = (Base Casting Time)/(1 + Spell Casting Speed)

  • A Spell Casting Speed of 50% results in the casting time lasting for only 67% of the base casting time.
  • A Spell Casting Speed of 100% results in the casting time lasting for only 50% of the base casting time.


Memory Capacity

Memory Capacity govern your spell/song cost cap, meaning equipping spells/songs that exceed this cap will not be usable.

Knowledge governs your Memory Capacity.

0 Knowledge starts at 0 Memory Capacity.

  • 0 -> 0
  • 0 to 6 = 0 each, up to 0
  • 6 to 100 = 1 each, up to 94

LaTeX Formula

Can be pasted into Desmos or other LaTeX editors for quick use of the equation.

Triple click to select all. Note: Some browsers will add an extra return carriage (line end) after the formula. Remove it before pasting for best results.

M_{emoryCapacity}(K_{nowledge})=\left\{0 \le K_{nowledge}<6:0+0\left|K_{nowledge}-0\right|,6 \le K_{nowledge}<100:0+1\left|K_{nowledge}-6\right|\right\}

See Example for how to use.


Total Memory Capacity = ceil(Memory Cap from Knowledge * (1 + Memory Cap Bonus%)) + Add Memory Cap

Memory Cap Bonus% and Add Memory Cap are two different Enchantments.

For example, with 12 Memory Cap from 18 knowledge, 7.7% Memory Cap Bonus, and +8 Add Memory Cap, the final Memory Capacity will be

ceil(12 * 1.077) + 8 = 21 Memory Capacity


Knowledge vs Memory Capacity Bonus
Classes Knowledge (-6) (+1) (+2) (+3) (+4) (+5) (+6) (+7) (+8) (+9) (+10) (+11) (+12)
Warlock 15 (9) 5.6% 16.7% 27.8% 38.9% 50.0% 61.2%
16 (10) 5.0% 15.0% 25.0% 35.0% 45.0% 55.0% 65.0% N/A
17 (11) 4.6% 13.7% 22.8% 31.9% 41.0% 50.0% 59.1% 68.2%
18 (12) 4.2% 12.5% 20.9% 29.2% 37.5% 45.9% 54.2% 62.5%
19 (13) 3.9% 11.6% 19.3% 27.0% 34.7% 42.4% 50.0% 57.7% 65.4%
Bard/Cleric/Druid 20 (14) 3.6% 10.8% 17.9% 25.0% 32.2% 39.3% 46.5% 53.6% 60.8% 67.9%
21 (15) 3.4% 10.0% 16.7% 23.4% 30.0% 36.7% 43.4% 50.0% 56.7% 63.4% 70.0%
22 (16) 3.2% 9.4% 15.7% 21.9% 28.2% 34.4% 40.7% 46.9% 53.2% 59.4% 65.7%
23 (17) 3.0% 8.9% 14.8% 20.6% 26.5% 32.4% 38.3% 44.2% 50.0% 55.9% 61.8% 67.7%
24 (18) 2.8% 8.4% 13.9% 19.5% 25.0% 30.6% 36.2% 41.7% 47.3% 52.8% 58.4% 63.9%
Wizard 25 (19) 2.7% 7.9% 13.2% 18.5% 23.7% 29.0% 34.3% 39.5% 44.8% 50.0% 55.3% 60.6%
26 (20) 2.5% 7.5% 12.5% 17.5% 22.5% 27.5% 32.5% 37.5% 42.5% 47.5% 52.5% 57.5%
27 (21) 2.4% 7.2% 12.0% 16.7% 21.5% 26.2% 31.0% 35.8% 40.5% 45.3% 50.0% 54.8%
28 (22) 2.3% 6.9% 12.5% 16.0% 20.5% 25.0% 29.6% 34.1% 38.7% 43.2% 47.8% 52.3%
29 (23) 2.2% 6.6% 10.9% 15.3% 19.6% 24.0% 28.3% 32.7% 37.0% 41.4% 45.7% 50.0%
30 (24) 2.1% 6.3% 10.5% 14.6% 18.8% 23.0% 27.1% 31.3% 35.5% 39.6% 43.8% 48.0%
31 (25) 2.0% 6.0% 10.0% 14.0% 18.0% 22.0% 26.0% 30.0% 34.0% 38.0% 42.0% 46.0%
32 (26) 2.0% 5.8% 9.7% 13.5% 17.4% 21.2% 25.0% 28.9% 32.7% 36.6% 40.4% 44.3%
33 (27) 1.9% 5.6% 9.3% 13.0% 16.7% 20.4% 24.1% 27.8% 31.5% 35.2% 38.9% 42.6%
34 (28) 1.8% 5.4% 9.0% 12.5% 16.1% 19.7% 23.3% 26.8% 30.4% 34.0% 37.5% 41.1%
35 (29) 1.8% 5.2% 8.7% 12.1% 15.6% 19.0% 22.5% 25.9% 29.4% 32.8% 36.3% 39.7%
36 (30) 1.7% 5.0% 8.4% 11.7% 15.0% 18.4% 21.7% 25.0% 28.4% 31.7% 35.0% 38.4%

Memory Recovery

Increases the amount of Spell/(Skill?) Points (SP) you restore per tick.

Despite also being referred to as Spell Recovery Bonus, this also applies to Bard songs.

Knowledge governs your Memory Recovery.

0 Knowledge starts at 43% Memory Recovery.

  • 0 -> 43%
  • 0 to 28 = 1.5% each, up to 85%
  • 28 to 35 = 5% each, up to 120%
  • 35 to 84 = 2% each, up to 218%
  • 84 to 85 = 1% each, up to 219%
  • 85 to 86 = 3% each, up to 222%
  • 86 to 100 = 2% each, up to 250%

LaTeX Formula

Can be pasted into Desmos or other LaTeX editors for quick use of the equation.

Triple click to select all. Note: Some browsers will add an extra return carriage (line end) after the formula. Remove it before pasting for best results.

M_{emoryRecovery}(K_{nowledge})=\left\{0 \le K_{nowledge}<28:0.43+0.015\left|K_{nowledge}-0\right|,28 \le K_{nowledge}<35:0.85+0.05\left|K_{nowledge}-28\right|,35 \le K_{nowledge}<84:1.2+0.02\left|K_{nowledge}-35\right|,84 \le K_{nowledge}<85:2.18+0.01\left|K_{nowledge}-84\right|,85 \le K_{nowledge}<86:2.19+0.03\left|K_{nowledge}-85\right|,86 \le K_{nowledge}<100:2.22+0.02\left|K_{nowledge}-86\right|\right\}

See Example for how to use.


SP Recharge per tick (SP/tick) = Base Recharge * (1 + Memory Recovery Bonus)

Resourcefulness

Regular Interaction Speed from Resourcefulness

Regular Interaction Speed governs the speed at which you interact with objects/mechanisms in the dungeon.

See the Hybrid stat Regular Interaction Speed for more.

Cooldown Reduction

Cooldown Reduction reduces the cooldowns of skills/perks.

Reduced cooldown length = Base Cooldown * (1 - Cooldown Reduction)

Note that perk cooldowns are in the form of a debuff and are additionally affected by Buff/Debuff Duration.

Reduced cooldown length = Post buff/debuff duration cooldown * (1 - Cooldown Reduction)

Resourcefulness governs your Cooldown Reduction.

0 Resourcefulness starts at -30% Cooldown Reduction.

  • 0 -> -30%
  • 0 to 20 = 2% each, up to 10%
  • 20 to 50 = 1% each, up to 40%
  • 50 to 100 = 0.5% each, up to 65%

LaTeX Formula

Can be pasted into Desmos or other LaTeX editors for quick use of the equation.

Triple click to select all. Note: Some browsers will add an extra return carriage (line end) after the formula. Remove it before pasting for best results.

C_{ooldownReduction}(R_{esourcefulness})=\left\{0 \le R_{esourcefulness}<20:-0.3+0.02\left|R_{esourcefulness}-0\right|,20 \le R_{esourcefulness}<50:0.1+0.01\left|R_{esourcefulness}-20\right|,50 \le R_{esourcefulness}<100:0.4+0.005\left|R_{esourcefulness}-50\right|\right\}

See Example for how to use.


Persuasiveness

Persuasiveness determines the duration of Bard songs' buffs/debuffs.

Resourcefulness governs your Persuasiveness.

0 Resourcefulness starts at 0 Persuasiveness.

  • 0 -> 0
  • 0 to 35 = 1 each, up to 35
  • 35 to 71 = 0.5 each, up to 53
  • 71 to 99 = 0.25 each, up to 60
  • 99 to 100 = 0 each, up to 60

LaTeX Formula

Can be pasted into Desmos or other LaTeX editors for quick use of the equation.

Triple click to select all. Note: Some browsers will add an extra return carriage (line end) after the formula. Remove it before pasting for best results.

P_{ersuasiveness}(R_{esourcefulness})=\left\{0 \le R_{esourcefulness}<35:0+1\left|R_{esourcefulness}-0\right|,35 \le R_{esourcefulness}<71:35+0.5\left|R_{esourcefulness}-35\right|,71 \le R_{esourcefulness}<99:53+0.25\left|R_{esourcefulness}-71\right|,99 \le R_{esourcefulness}<100:60+0\left|R_{esourcefulness}-99\right|\right\}

See Example for how to use.


Base buff duration formula:

Base Duration x (Persuasiveness/Base Persuasiveness) x Persuasiveness Scaling


Base Persuasiveness is currently 15 due to Bard's 15 Resourcefulness.

Each point in Persuasiveness over the base of 15 grants a 6.66% longer base duration.

The duration listed both in game and in a song's description at Bard represent the duration of the song at the base of 15 Persuasiveness. Some songs are noted as 0% Persuasiveness Scaling, meaning they always last the listed amount, before Buff/Debuff duration. Some songs technically apply no duration or their affect lasts only while Channeling, like Peacemaking and Chaotic Discord.

For example, Perfectly played Rousing Rhythms has a 90s duration (as of writing this) there if Bard has 20 Persuasiveness, outgoing base buff duration will be:

90 x 20/15 x 100% = 120 seconds

This will also then get multiplied by the receiver's Buff Duration/Debuff Duration

Buff Duration Calculator

Attribute Bonus

Attributes can be multiplied by sources such as Warlock's Curse of Weakness, or Wizard's Sage perk. These multipliers are applied after all other sources of additional attributes.

Final Attribute = Attribute * (1 + Attribute Bonus)


For example, with 30 Strength, and 15% Strength Bonus, final strength would be

Final Strength = 30 * (1 + 0.15) = 34.5 Strength

Note that attributes can have decimals, though in the in game details page they will be rounded.


Not to be confused with Attribute Bonus Ratio (Scaling)

Hybrid Stats

Hybrid stats are stats which come from a combination of attributes. For example, Health is determined by both Strength and Vigor.

Hybrid stats are calculated by first using separate weights to combine the relevant attributes into a Rating (which is not displayed in the Details screen), and then converting that Rating into the value displayed in the Details screen. This intermediate Rating can be fractional and is not rounded before being converted to the appropriate stat.

Max Health

Max Health determines your characters maximum Health.

Could not find stat in Template:Stats_Data

LaTeX Formula

Can be pasted into Desmos or other LaTeX editors for quick use of the equation.

Triple click to select all. Note: Some browsers will add an extra return carriage (line end) after the formula. Remove it before pasting for best results. Could not find stat in Template:Stats_Data See Example for how to use.


Final Max Health formula with examples can be found on the Health page.

Action Speed

Action Speed governs the speed at which you interact with your weapons, meaning stowing, swapping, reloading or attacking with weapons, as well as the speed of usage of consumables. See Action/Interaction/Cast_Speed for more.

Agility and Dexterity governs your Action Speed.

Agility gives 0.25 Action Speed Rating, and Dexterity gives 0.75 Action Speed Rating, which then get summed into a total Action Speed Rating and finally converted into Action Speed using the graph.

Action Speed Rating = Agility * 0.25 + Dexterity * 0.75


0 Action Speed Rating starts at -38% Action Speed.

  • 0 -> -38%
  • 0 to 10 = 3% each, up to -8%
  • 10 to 13 = 2% each, up to -2%
  • 13 to 25 = 1% each, up to 10%
  • 25 to 41 = 1.5% each, up to 34%
  • 41 to 50 = 1% each, up to 43%
  • 50 to 100 = 0.5% each, up to 68%

LaTeX Formula

Can be pasted into Desmos or other LaTeX editors for quick use of the equation.

Triple click to select all. Note: Some browsers will add an extra return carriage (line end) after the formula. Remove it before pasting for best results.

A_{ctionSpeed}(S_{um})=\left\{0 \le S_{um}<10:-0.38+0.03\left|S_{um}-0\right|,10 \le S_{um}<13:-0.08+0.02\left|S_{um}-10\right|,13 \le S_{um}<25:-0.02+0.01\left|S_{um}-13\right|,25 \le S_{um}<41:0.1+0.015\left|S_{um}-25\right|,41 \le S_{um}<50:0.34+0.01\left|S_{um}-41\right|,50 \le S_{um}<100:0.43+0.005\left|S_{um}-50\right|\right\}

See Example for how to use.



An Action Speed of 50% results in the animation lasting for only 67% of the base animation length.

New animation length = Base animation length / (1 + Action Speed)


Regular Interaction Speed

Regular Interaction Speed governs the speed at which you interact with objects/mechanisms in the dungeon. See Action/Interaction/Cast_Speed for more.

Agility and Resourcefulness governs your Regular Interaction Speed.

Agility gives 0.4 Regular Interaction Speed Rating, and Resourcefulness gives 0.6 Regular Interaction Speed Rating, which then get summed into a total Regular Interaction Speed Rating and finally converted into Regular Interaction Speed using the graph.

Regular Interaction Speed Rating = Agility * 0.4 + Resourcefulness * 0.6


0 Regular Interaction Speed Rating starts at -26% Regular Interaction Speed.

  • 0 -> -26%
  • 0 to 7 = 2% each, up to -12%
  • 7 to 15 = 1.5% each, up to 0%
  • 15 to 20 = 7% each, up to 35%
  • 20 to 25 = 6% each, up to 65%
  • 25 to 30 = 5% each, up to 90%
  • 30 to 35 = 4% each, up to 110%
  • 35 to 40 = 3% each, up to 125%
  • 40 to 45 = 2% each, up to 135%
  • 45 to 100 = 1% each, up to 190%

LaTeX Formula

Can be pasted into Desmos or other LaTeX editors for quick use of the equation.

Triple click to select all. Note: Some browsers will add an extra return carriage (line end) after the formula. Remove it before pasting for best results.

R_{egularInteractionSpeed}(S_{um})=\left\{0 \le S_{um}<7:-0.26+0.02\left|S_{um}-0\right|,7 \le S_{um}<15:-0.12+0.015\left|S_{um}-7\right|,15 \le S_{um}<20:0+0.07\left|S_{um}-15\right|,20 \le S_{um}<25:0.35+0.06\left|S_{um}-20\right|,25 \le S_{um}<30:0.65+0.05\left|S_{um}-25\right|,30 \le S_{um}<35:0.9+0.04\left|S_{um}-30\right|,35 \le S_{um}<40:1.1+0.03\left|S_{um}-35\right|,40 \le S_{um}<45:1.25+0.02\left|S_{um}-40\right|,45 \le S_{um}<100:1.35+0.01\left|S_{um}-45\right|\right\}

See Example for how to use.



New interaction length = Base interaction length / (1 + interaction speed)


For example, an Interaction Speed of 100% results in the interaction time lasting for only 50% of the base interaction length.

Surgical Kits and Bandages have 50% Scaling on regular interaction speed, therefore, their formula looks like

New interaction length = Base interaction length / (1 + interaction speed * .5)

Other Stats

Armor Rating

Armor Rating (AR) is determined from the armor your wearing, but can also be increased in some ways such as Fighter's Barricade (Armor Rating) or Fighter's Defense Mastery (Armor Rating Bonus).

Formula can be simplified as:
Final Armor Rating = Armor Rating * (1 + Armor Rating Bonus)


Note that Fighter's Defense Mastery and Rogue's Weakpoint Attack are specifically Item Armor Rating Bonus, meaning they only affect the AR from Items (excluding enchants), where the following formula should be applied.

Final Armor Rating = Armor Rating from armor * (1 + Item Armor Rating Bonus) + other Armor Rating * (1 + Armor Rating Bonus)


Note that only Item Armor Rating Bonus exists currently, and not Armor Rating Bonus. Therefore, the shortest form of this expanded formula can be written as:

Final Armor Rating = Armor Rating from armor * (1 + Item Armor Rating bonus) + other Armor Rating


Example using the last formula:
With 100 AR from equipped Items, 20 from Enchantments, and -40% Item Armor Rating Bonus, the player would result in

100 * (1 + -0.4) + 20 = 80 Armor Rating

Physical Damage Reduction

Physical Damage Reduction governs your resistance to physical damage dealing weapons and projectiles. Unlike Magic Resistance that is increased by Will, Armor Rating does not have an attribute stat that it scales off.

Armor Rating governs your Physical Damage Reduction.

-300 Armor Rating starts at -619% Physical Damage Reduction.

  • -300 -> -619%
  • -300 to -3 = 2% each, up to -25%
  • -3 to 22 = 1% each, up to 0%
  • 22 to 31 = 0.5% each, up to 4.5%
  • 31 to 42 = 0.4% each, up to 8.9%
  • 42 to 52 = 0.3% each, up to 11.9%
  • 52 to 62 = 0.2% each, up to 13.9%
  • 62 to 112 = 0.1% each, up to 18.9%
  • 112 to 175 = 0.2% each, up to 31.5%
  • 175 to 230 = 0.25% each, up to 45.25%
  • 230 to 317 = 0.2% each, up to 62.65%
  • 317 to 353 = 0.1% each, up to 66.25%
  • 353 to 368 = 0.05% each, up to 67%
  • 368 to 369 = 0.03% each, up to 67.03%
  • 369 to 370 = 0.07% each, up to 67.1%
  • 370 to 428 = 0.05% each, up to 70%
  • 428 to 429 = -0.075% each, up to 69.925%
  • 429 to 450 = 0.025% each, up to 70.45%
  • 450 to 500 = 0.02% each, up to 71.45%

LaTeX Formula

Can be pasted into Desmos or other LaTeX editors for quick use of the equation.

Triple click to select all. Note: Some browsers will add an extra return carriage (line end) after the formula. Remove it before pasting for best results.

P_{hysicalDamageReduction}(A_{rmorRating})=\left\{-300 \le A_{rmorRating}<-3:-6.19+0.02\left|A_{rmorRating}--300\right|,-3 \le A_{rmorRating}<22:-0.25+0.01\left|A_{rmorRating}--3\right|,22 \le A_{rmorRating}<31:0+0.005\left|A_{rmorRating}-22\right|,31 \le A_{rmorRating}<42:0.045+0.004\left|A_{rmorRating}-31\right|,42 \le A_{rmorRating}<52:0.089+0.003\left|A_{rmorRating}-42\right|,52 \le A_{rmorRating}<62:0.119+0.002\left|A_{rmorRating}-52\right|,62 \le A_{rmorRating}<112:0.139+0.001\left|A_{rmorRating}-62\right|,112 \le A_{rmorRating}<175:0.189+0.002\left|A_{rmorRating}-112\right|,175 \le A_{rmorRating}<230:0.315+0.003\left|A_{rmorRating}-175\right|,230 \le A_{rmorRating}<317:0.453+0.002\left|A_{rmorRating}-230\right|,317 \le A_{rmorRating}<353:0.626+0.001\left|A_{rmorRating}-317\right|,353 \le A_{rmorRating}<368:0.662+0.001\left|A_{rmorRating}-353\right|,368 \le A_{rmorRating}<369:0.67+0\left|A_{rmorRating}-368\right|,369 \le A_{rmorRating}<370:0.67+0.001\left|A_{rmorRating}-369\right|,370 \le A_{rmorRating}<428:0.671+0\left|A_{rmorRating}-370\right|,428 \le A_{rmorRating}<429:0.7+-0.001\left|A_{rmorRating}-428\right|,429 \le A_{rmorRating}<450:0.699+0\left|A_{rmorRating}-429\right|,450 \le A_{rmorRating}<500:0.705+0\left|A_{rmorRating}-450\right|\right\}

See Example for how to use.


Physical Damage Reduction is capped to 75%

Impact Power

Impact Power governs the strength of your weapon strikes against a target, it determines if you can break objects and stagger blocking enemies.

Item Swap Speed

Speed at which items are swapped as the current active item. Note that is separate to Wearing Time Speed

Wearing Time Speed

Speed at which items are worn by equipping them from the inventory.

Luck

Loot is rolled when you open the container or kill the mob.

Whoever opens the loot first or kills the mob first is the person whose luck is used to calculate the drops.
(It is not confirmed if Bard's Unchained Harmony rolls the loot table when it opens the containers.)

Luck is capped at 500.
It is possible to reach the Luck cap:

Luck Scalar

Luck Scalars are but one piece of information needed to calculate drop probability at X Luck.

The calculation is not a simple multiplication, so do not expect Uniques to be 4.382 times more common at 500 Luck.

The true effect of Luck varies depending on Drop Rate tables. See the Luck subsection Probabilities from Luck for an in-depth explanation of how Luck Scalars affect probabilities of drops.

Additionally, luck works with a hidden property called Luck Grade. While the table below has luck grade colored similar to item rarities, the two properties are not equivalent.
Many loot tables will match Item Rarity one to one with item Luck Grade, but there are exceptions. Don't fall into the trap of thinking luck makes higher rarities more common; see the Cave Troll's quest drops for a counterexample.

Luck Scalar Table

Luck Grade Luck
0 50 100 150 200 250 300 350 400 450 500
0 1.000 0.950 0.900 0.850 0.800 0.750 0.700 0.650 0.600 0.550 0.500
1 1.000 0.950 0.900 0.850 0.800 0.750 0.700 0.650 0.600 0.550 0.500
2 1.000 0.975 0.950 0.925 0.900 0.875 0.850 0.825 0.800 0.775 0.750
3 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
4 1.000 1.476 1.901 2.277 2.602 2.878 3.103 3.279 3.404 3.480 3.505
5 1.000 1.547 2.036 2.468 2.842 3.159 3.418 3.620 3.765 3.851 3.881
6 1.000 1.618 2.171 2.659 3.083 3.441 3.734 3.962 4.125 4.223 4.257
7 1.000 1.642 2.216 2.723 3.163 3.535 3.839 4.076 4.245 4.347 4.382
8 1.000 1.642 2.216 2.723 3.163 3.535 3.839 4.076 4.245 4.347 4.382

If the Luck Scalar Table and Graph don't cover a Scalar value you wish to see, use the desmos graph. The desmos graph displays the LaTeX equations. While the curves are continuous, keep in mind that fractional values of Luck do not exist.

Luck Scalar Graph

LaTeX Formula

Can be pasted into Desmos or other LaTeX editors for quick use of the equation.

Triple click to select all. Note: Some browsers will add an extra return carriage (line end) after the formula. Remove it before pasting for best results.

L_{uckGrade00}(L_{uckGrade})=\left\{0 \le L_{uckGrade}<500:1+-0.001\left|L_{uckGrade}-0\right|\right\}

See Example for how to use.


LaTeX Formula

Can be pasted into Desmos or other LaTeX editors for quick use of the equation.

Triple click to select all. Note: Some browsers will add an extra return carriage (line end) after the formula. Remove it before pasting for best results.

L_{uckGrade01}(L_{uckGrade})=\left\{0 \le L_{uckGrade}<500:1+-0.001\left|L_{uckGrade}-0\right|\right\}

See Example for how to use.


LaTeX Formula

Can be pasted into Desmos or other LaTeX editors for quick use of the equation.

Triple click to select all. Note: Some browsers will add an extra return carriage (line end) after the formula. Remove it before pasting for best results.

L_{uckGrade02}(L_{uckGrade})=\left\{0 \le L_{uckGrade}<1:1+0\left|L_{uckGrade}-0\right|,1 \le L_{uckGrade}<2:1+-0.001\left|L_{uckGrade}-1\right|,2 \le L_{uckGrade}<3:0.999+0\left|L_{uckGrade}-2\right|,3 \le L_{uckGrade}<4:0.999+-0.001\left|L_{uckGrade}-3\right|,4 \le L_{uckGrade}<5:0.998+0\left|L_{uckGrade}-4\right|,5 \le L_{uckGrade}<6:0.998+-0.001\left|L_{uckGrade}-5\right|,6 \le L_{uckGrade}<7:0.997+0\left|L_{uckGrade}-6\right|,7 \le L_{uckGrade}<8:0.997+-0.001\left|L_{uckGrade}-7\right|,8 \le L_{uckGrade}<9:0.996+0\left|L_{uckGrade}-8\right|,9 \le L_{uckGrade}<10:0.996+-0.001\left|L_{uckGrade}-9\right|,10 \le L_{uckGrade}<11:0.995+0\left|L_{uckGrade}-10\right|,11 \le L_{uckGrade}<12:0.995+-0.001\left|L_{uckGrade}-11\right|,12 \le L_{uckGrade}<13:0.994+0\left|L_{uckGrade}-12\right|,13 \le L_{uckGrade}<14:0.994+-0.001\left|L_{uckGrade}-13\right|,14 \le L_{uckGrade}<15:0.993+0\left|L_{uckGrade}-14\right|,15 \le L_{uckGrade}<16:0.993+-0.001\left|L_{uckGrade}-15\right|,16 \le L_{uckGrade}<17:0.992+0\left|L_{uckGrade}-16\right|,17 \le L_{uckGrade}<18:0.992+-0.001\left|L_{uckGrade}-17\right|,18 \le L_{uckGrade}<19:0.991+0\left|L_{uckGrade}-18\right|,19 \le L_{uckGrade}<20:0.991+-0.001\left|L_{uckGrade}-19\right|,20 \le L_{uckGrade}<21:0.99+0\left|L_{uckGrade}-20\right|,21 \le L_{uckGrade}<22:0.99+-0.001\left|L_{uckGrade}-21\right|,22 \le L_{uckGrade}<23:0.989+0\left|L_{uckGrade}-22\right|,23 \le L_{uckGrade}<24:0.989+-0.001\left|L_{uckGrade}-23\right|,24 \le L_{uckGrade}<25:0.988+0\left|L_{uckGrade}-24\right|,25 \le L_{uckGrade}<26:0.988+-0.001\left|L_{uckGrade}-25\right|,26 \le L_{uckGrade}<27:0.987+0\left|L_{uckGrade}-26\right|,27 \le L_{uckGrade}<28:0.987+-0.001\left|L_{uckGrade}-27\right|,28 \le L_{uckGrade}<29:0.986+0\left|L_{uckGrade}-28\right|,29 \le L_{uckGrade}<30:0.986+-0.001\left|L_{uckGrade}-29\right|,30 \le L_{uckGrade}<31:0.985+0\left|L_{uckGrade}-30\right|,31 \le L_{uckGrade}<32:0.985+-0.001\left|L_{uckGrade}-31\right|,32 \le L_{uckGrade}<33:0.984+0\left|L_{uckGrade}-32\right|,33 \le L_{uckGrade}<34:0.984+-0.001\left|L_{uckGrade}-33\right|,34 \le L_{uckGrade}<35:0.983+0\left|L_{uckGrade}-34\right|,35 \le L_{uckGrade}<36:0.983+-0.001\left|L_{uckGrade}-35\right|,36 \le L_{uckGrade}<37:0.982+0\left|L_{uckGrade}-36\right|,37 \le L_{uckGrade}<38:0.982+-0.001\left|L_{uckGrade}-37\right|,38 \le L_{uckGrade}<39:0.981+0\left|L_{uckGrade}-38\right|,39 \le L_{uckGrade}<40:0.981+-0.001\left|L_{uckGrade}-39\right|,40 \le L_{uckGrade}<41:0.98+0\left|L_{uckGrade}-40\right|,41 \le L_{uckGrade}<42:0.98+-0.001\left|L_{uckGrade}-41\right|,42 \le L_{uckGrade}<43:0.979+0\left|L_{uckGrade}-42\right|,43 \le L_{uckGrade}<44:0.979+-0.001\left|L_{uckGrade}-43\right|,44 \le L_{uckGrade}<45:0.978+0\left|L_{uckGrade}-44\right|,45 \le L_{uckGrade}<46:0.978+-0.001\left|L_{uckGrade}-45\right|,46 \le L_{uckGrade}<47:0.977+0\left|L_{uckGrade}-46\right|,47 \le L_{uckGrade}<48:0.977+-0.001\left|L_{uckGrade}-47\right|,48 \le L_{uckGrade}<49:0.976+0\left|L_{uckGrade}-48\right|,49 \le L_{uckGrade}<50:0.976+-0.001\left|L_{uckGrade}-49\right|,50 \le L_{uckGrade}<51:0.975+0\left|L_{uckGrade}-50\right|,51 \le L_{uckGrade}<52:0.975+-0.001\left|L_{uckGrade}-51\right|,52 \le L_{uckGrade}<53:0.974+0\left|L_{uckGrade}-52\right|,53 \le L_{uckGrade}<54:0.974+-0.001\left|L_{uckGrade}-53\right|,54 \le L_{uckGrade}<55:0.973+0\left|L_{uckGrade}-54\right|,55 \le L_{uckGrade}<56:0.973+-0.001\left|L_{uckGrade}-55\right|,56 \le L_{uckGrade}<57:0.972+0\left|L_{uckGrade}-56\right|,57 \le L_{uckGrade}<58:0.972+-0.001\left|L_{uckGrade}-57\right|,58 \le L_{uckGrade}<59:0.971+0\left|L_{uckGrade}-58\right|,59 \le L_{uckGrade}<60:0.971+-0.001\left|L_{uckGrade}-59\right|,60 \le L_{uckGrade}<61:0.97+0\left|L_{uckGrade}-60\right|,61 \le L_{uckGrade}<62:0.97+-0.001\left|L_{uckGrade}-61\right|,62 \le L_{uckGrade}<63:0.969+0\left|L_{uckGrade}-62\right|,63 \le L_{uckGrade}<64:0.969+-0.001\left|L_{uckGrade}-63\right|,64 \le L_{uckGrade}<65:0.968+0\left|L_{uckGrade}-64\right|,65 \le L_{uckGrade}<66:0.968+-0.001\left|L_{uckGrade}-65\right|,66 \le L_{uckGrade}<67:0.967+0\left|L_{uckGrade}-66\right|,67 \le L_{uckGrade}<68:0.967+-0.001\left|L_{uckGrade}-67\right|,68 \le L_{uckGrade}<69:0.966+0\left|L_{uckGrade}-68\right|,69 \le L_{uckGrade}<70:0.966+-0.001\left|L_{uckGrade}-69\right|,70 \le L_{uckGrade}<71:0.965+0\left|L_{uckGrade}-70\right|,71 \le L_{uckGrade}<72:0.965+-0.001\left|L_{uckGrade}-71\right|,72 \le L_{uckGrade}<73:0.964+0\left|L_{uckGrade}-72\right|,73 \le L_{uckGrade}<74:0.964+-0.001\left|L_{uckGrade}-73\right|,74 \le L_{uckGrade}<75:0.963+0\left|L_{uckGrade}-74\right|,75 \le L_{uckGrade}<76:0.963+-0.001\left|L_{uckGrade}-75\right|,76 \le L_{uckGrade}<77:0.962+0\left|L_{uckGrade}-76\right|,77 \le L_{uckGrade}<78:0.962+-0.001\left|L_{uckGrade}-77\right|,78 \le L_{uckGrade}<79:0.961+0\left|L_{uckGrade}-78\right|,79 \le L_{uckGrade}<80:0.961+-0.001\left|L_{uckGrade}-79\right|,80 \le L_{uckGrade}<81:0.96+0\left|L_{uckGrade}-80\right|,81 \le L_{uckGrade}<82:0.96+-0.001\left|L_{uckGrade}-81\right|,82 \le L_{uckGrade}<83:0.959+0\left|L_{uckGrade}-82\right|,83 \le L_{uckGrade}<84:0.959+-0.001\left|L_{uckGrade}-83\right|,84 \le L_{uckGrade}<85:0.958+0\left|L_{uckGrade}-84\right|,85 \le L_{uckGrade}<86:0.958+-0.001\left|L_{uckGrade}-85\right|,86 \le L_{uckGrade}<87:0.957+0\left|L_{uckGrade}-86\right|,87 \le L_{uckGrade}<88:0.957+-0.001\left|L_{uckGrade}-87\right|,88 \le L_{uckGrade}<89:0.956+0\left|L_{uckGrade}-88\right|,89 \le L_{uckGrade}<90:0.956+-0.001\left|L_{uckGrade}-89\right|,90 \le L_{uckGrade}<91:0.955+0\left|L_{uckGrade}-90\right|,91 \le L_{uckGrade}<92:0.955+-0.001\left|L_{uckGrade}-91\right|,92 \le L_{uckGrade}<93:0.954+0\left|L_{uckGrade}-92\right|,93 \le L_{uckGrade}<94:0.954+-0.001\left|L_{uckGrade}-93\right|,94 \le L_{uckGrade}<95:0.953+0\left|L_{uckGrade}-94\right|,95 \le L_{uckGrade}<96:0.953+-0.001\left|L_{uckGrade}-95\right|,96 \le L_{uckGrade}<97:0.952+0\left|L_{uckGrade}-96\right|,97 \le L_{uckGrade}<98:0.952+-0.001\left|L_{uckGrade}-97\right|,98 \le L_{uckGrade}<99:0.951+0\left|L_{uckGrade}-98\right|,99 \le L_{uckGrade}<100:0.951+-0.001\left|L_{uckGrade}-99\right|,100 \le L_{uckGrade}<101:0.95+0\left|L_{uckGrade}-100\right|,101 \le L_{uckGrade}<102:0.95+-0.001\left|L_{uckGrade}-101\right|,102 \le L_{uckGrade}<103:0.949+0\left|L_{uckGrade}-102\right|,103 \le L_{uckGrade}<104:0.949+-0.001\left|L_{uckGrade}-103\right|,104 \le L_{uckGrade}<105:0.948+0\left|L_{uckGrade}-104\right|,105 \le L_{uckGrade}<106:0.948+-0.001\left|L_{uckGrade}-105\right|,106 \le L_{uckGrade}<107:0.947+0\left|L_{uckGrade}-106\right|,107 \le L_{uckGrade}<108:0.947+-0.001\left|L_{uckGrade}-107\right|,108 \le L_{uckGrade}<109:0.946+0\left|L_{uckGrade}-108\right|,109 \le L_{uckGrade}<110:0.946+-0.001\left|L_{uckGrade}-109\right|,110 \le L_{uckGrade}<111:0.945+0\left|L_{uckGrade}-110\right|,111 \le L_{uckGrade}<112:0.945+-0.001\left|L_{uckGrade}-111\right|,112 \le L_{uckGrade}<113:0.944+0\left|L_{uckGrade}-112\right|,113 \le L_{uckGrade}<114:0.944+-0.001\left|L_{uckGrade}-113\right|,114 \le L_{uckGrade}<115:0.943+0\left|L_{uckGrade}-114\right|,115 \le L_{uckGrade}<116:0.943+-0.001\left|L_{uckGrade}-115\right|,116 \le L_{uckGrade}<117:0.942+0\left|L_{uckGrade}-116\right|,117 \le L_{uckGrade}<118:0.942+-0.001\left|L_{uckGrade}-117\right|,118 \le L_{uckGrade}<119:0.941+0\left|L_{uckGrade}-118\right|,119 \le L_{uckGrade}<120:0.941+-0.001\left|L_{uckGrade}-119\right|,120 \le L_{uckGrade}<121:0.94+0\left|L_{uckGrade}-120\right|,121 \le L_{uckGrade}<122:0.94+-0.001\left|L_{uckGrade}-121\right|,122 \le L_{uckGrade}<123:0.939+0\left|L_{uckGrade}-122\right|,123 \le L_{uckGrade}<124:0.939+-0.001\left|L_{uckGrade}-123\right|,124 \le L_{uckGrade}<125:0.938+0\left|L_{uckGrade}-124\right|,125 \le L_{uckGrade}<126:0.938+-0.001\left|L_{uckGrade}-125\right|,126 \le L_{uckGrade}<127:0.937+0\left|L_{uckGrade}-126\right|,127 \le L_{uckGrade}<128:0.937+-0.001\left|L_{uckGrade}-127\right|,128 \le L_{uckGrade}<129:0.936+0\left|L_{uckGrade}-128\right|,129 \le L_{uckGrade}<130:0.936+-0.001\left|L_{uckGrade}-129\right|,130 \le L_{uckGrade}<131:0.935+0\left|L_{uckGrade}-130\right|,131 \le L_{uckGrade}<132:0.935+-0.001\left|L_{uckGrade}-131\right|,132 \le L_{uckGrade}<133:0.934+0\left|L_{uckGrade}-132\right|,133 \le L_{uckGrade}<134:0.934+-0.001\left|L_{uckGrade}-133\right|,134 \le L_{uckGrade}<135:0.933+0\left|L_{uckGrade}-134\right|,135 \le L_{uckGrade}<136:0.933+-0.001\left|L_{uckGrade}-135\right|,136 \le L_{uckGrade}<137:0.932+0\left|L_{uckGrade}-136\right|,137 \le L_{uckGrade}<138:0.932+-0.001\left|L_{uckGrade}-137\right|,138 \le L_{uckGrade}<139:0.931+0\left|L_{uckGrade}-138\right|,139 \le L_{uckGrade}<140:0.931+-0.001\left|L_{uckGrade}-139\right|,140 \le L_{uckGrade}<141:0.93+0\left|L_{uckGrade}-140\right|,141 \le L_{uckGrade}<142:0.93+-0.001\left|L_{uckGrade}-141\right|,142 \le L_{uckGrade}<143:0.929+0\left|L_{uckGrade}-142\right|,143 \le L_{uckGrade}<144:0.929+-0.001\left|L_{uckGrade}-143\right|,144 \le L_{uckGrade}<145:0.928+0\left|L_{uckGrade}-144\right|,145 \le L_{uckGrade}<146:0.928+-0.001\left|L_{uckGrade}-145\right|,146 \le L_{uckGrade}<147:0.927+0\left|L_{uckGrade}-146\right|,147 \le L_{uckGrade}<148:0.927+-0.001\left|L_{uckGrade}-147\right|,148 \le L_{uckGrade}<149:0.926+0\left|L_{uckGrade}-148\right|,149 \le L_{uckGrade}<150:0.926+-0.001\left|L_{uckGrade}-149\right|,150 \le L_{uckGrade}<151:0.925+0\left|L_{uckGrade}-150\right|,151 \le L_{uckGrade}<152:0.925+-0.001\left|L_{uckGrade}-151\right|,152 \le L_{uckGrade}<153:0.924+0\left|L_{uckGrade}-152\right|,153 \le L_{uckGrade}<154:0.924+-0.001\left|L_{uckGrade}-153\right|,154 \le L_{uckGrade}<155:0.923+0\left|L_{uckGrade}-154\right|,155 \le L_{uckGrade}<156:0.923+-0.001\left|L_{uckGrade}-155\right|,156 \le L_{uckGrade}<157:0.922+0\left|L_{uckGrade}-156\right|,157 \le L_{uckGrade}<158:0.922+-0.001\left|L_{uckGrade}-157\right|,158 \le L_{uckGrade}<159:0.921+0\left|L_{uckGrade}-158\right|,159 \le L_{uckGrade}<160:0.921+-0.001\left|L_{uckGrade}-159\right|,160 \le L_{uckGrade}<161:0.92+0\left|L_{uckGrade}-160\right|,161 \le L_{uckGrade}<162:0.92+-0.001\left|L_{uckGrade}-161\right|,162 \le L_{uckGrade}<163:0.919+0\left|L_{uckGrade}-162\right|,163 \le L_{uckGrade}<164:0.919+-0.001\left|L_{uckGrade}-163\right|,164 \le L_{uckGrade}<165:0.918+0\left|L_{uckGrade}-164\right|,165 \le L_{uckGrade}<166:0.918+-0.001\left|L_{uckGrade}-165\right|,166 \le L_{uckGrade}<167:0.917+0\left|L_{uckGrade}-166\right|,167 \le L_{uckGrade}<168:0.917+-0.001\left|L_{uckGrade}-167\right|,168 \le L_{uckGrade}<169:0.916+0\left|L_{uckGrade}-168\right|,169 \le L_{uckGrade}<170:0.916+-0.001\left|L_{uckGrade}-169\right|,170 \le L_{uckGrade}<171:0.915+0\left|L_{uckGrade}-170\right|,171 \le L_{uckGrade}<172:0.915+-0.001\left|L_{uckGrade}-171\right|,172 \le L_{uckGrade}<173:0.914+0\left|L_{uckGrade}-172\right|,173 \le L_{uckGrade}<174:0.914+-0.001\left|L_{uckGrade}-173\right|,174 \le L_{uckGrade}<175:0.913+0\left|L_{uckGrade}-174\right|,175 \le L_{uckGrade}<176:0.913+-0.001\left|L_{uckGrade}-175\right|,176 \le L_{uckGrade}<177:0.912+0\left|L_{uckGrade}-176\right|,177 \le L_{uckGrade}<178:0.912+-0.001\left|L_{uckGrade}-177\right|,178 \le L_{uckGrade}<179:0.911+0\left|L_{uckGrade}-178\right|,179 \le L_{uckGrade}<180:0.911+-0.001\left|L_{uckGrade}-179\right|,180 \le L_{uckGrade}<181:0.91+0\left|L_{uckGrade}-180\right|,181 \le L_{uckGrade}<182:0.91+-0.001\left|L_{uckGrade}-181\right|,182 \le L_{uckGrade}<183:0.909+0\left|L_{uckGrade}-182\right|,183 \le L_{uckGrade}<184:0.909+-0.001\left|L_{uckGrade}-183\right|,184 \le L_{uckGrade}<185:0.908+0\left|L_{uckGrade}-184\right|,185 \le L_{uckGrade}<186:0.908+-0.001\left|L_{uckGrade}-185\right|,186 \le L_{uckGrade}<187:0.907+0\left|L_{uckGrade}-186\right|,187 \le L_{uckGrade}<188:0.907+-0.001\left|L_{uckGrade}-187\right|,188 \le L_{uckGrade}<189:0.906+0\left|L_{uckGrade}-188\right|,189 \le L_{uckGrade}<190:0.906+-0.001\left|L_{uckGrade}-189\right|,190 \le L_{uckGrade}<191:0.905+0\left|L_{uckGrade}-190\right|,191 \le L_{uckGrade}<192:0.905+-0.001\left|L_{uckGrade}-191\right|,192 \le L_{uckGrade}<193:0.904+0\left|L_{uckGrade}-192\right|,193 \le L_{uckGrade}<194:0.904+-0.001\left|L_{uckGrade}-193\right|,194 \le L_{uckGrade}<195:0.903+0\left|L_{uckGrade}-194\right|,195 \le L_{uckGrade}<196:0.903+-0.001\left|L_{uckGrade}-195\right|,196 \le L_{uckGrade}<197:0.902+0\left|L_{uckGrade}-196\right|,197 \le L_{uckGrade}<198:0.902+-0.001\left|L_{uckGrade}-197\right|,198 \le L_{uckGrade}<199:0.901+0\left|L_{uckGrade}-198\right|,199 \le L_{uckGrade}<200:0.901+-0.001\left|L_{uckGrade}-199\right|,200 \le L_{uckGrade}<201:0.9+0\left|L_{uckGrade}-200\right|,201 \le L_{uckGrade}<202:0.9+-0.001\left|L_{uckGrade}-201\right|,202 \le L_{uckGrade}<203:0.899+0\left|L_{uckGrade}-202\right|,203 \le L_{uckGrade}<204:0.899+-0.001\left|L_{uckGrade}-203\right|,204 \le L_{uckGrade}<205:0.898+0\left|L_{uckGrade}-204\right|,205 \le L_{uckGrade}<206:0.898+-0.001\left|L_{uckGrade}-205\right|,206 \le L_{uckGrade}<207:0.897+0\left|L_{uckGrade}-206\right|,207 \le L_{uckGrade}<208:0.897+-0.001\left|L_{uckGrade}-207\right|,208 \le L_{uckGrade}<209:0.896+0\left|L_{uckGrade}-208\right|,209 \le L_{uckGrade}<210:0.896+-0.001\left|L_{uckGrade}-209\right|,210 \le L_{uckGrade}<211:0.895+0\left|L_{uckGrade}-210\right|,211 \le L_{uckGrade}<212:0.895+-0.001\left|L_{uckGrade}-211\right|,212 \le L_{uckGrade}<213:0.894+0\left|L_{uckGrade}-212\right|,213 \le L_{uckGrade}<214:0.894+-0.001\left|L_{uckGrade}-213\right|,214 \le L_{uckGrade}<215:0.893+0\left|L_{uckGrade}-214\right|,215 \le L_{uckGrade}<216:0.893+-0.001\left|L_{uckGrade}-215\right|,216 \le L_{uckGrade}<217:0.892+0\left|L_{uckGrade}-216\right|,217 \le L_{uckGrade}<218:0.892+-0.001\left|L_{uckGrade}-217\right|,218 \le L_{uckGrade}<219:0.891+0\left|L_{uckGrade}-218\right|,219 \le L_{uckGrade}<220:0.891+-0.001\left|L_{uckGrade}-219\right|,220 \le L_{uckGrade}<221:0.89+0\left|L_{uckGrade}-220\right|,221 \le L_{uckGrade}<222:0.89+-0.001\left|L_{uckGrade}-221\right|,222 \le L_{uckGrade}<223:0.889+0\left|L_{uckGrade}-222\right|,223 \le L_{uckGrade}<224:0.889+-0.001\left|L_{uckGrade}-223\right|,224 \le L_{uckGrade}<225:0.888+0\left|L_{uckGrade}-224\right|,225 \le L_{uckGrade}<226:0.888+-0.001\left|L_{uckGrade}-225\right|,226 \le L_{uckGrade}<227:0.887+0\left|L_{uckGrade}-226\right|,227 \le L_{uckGrade}<228:0.887+-0.001\left|L_{uckGrade}-227\right|,228 \le L_{uckGrade}<229:0.886+0\left|L_{uckGrade}-228\right|,229 \le L_{uckGrade}<230:0.886+-0.001\left|L_{uckGrade}-229\right|,230 \le L_{uckGrade}<231:0.885+0\left|L_{uckGrade}-230\right|,231 \le L_{uckGrade}<232:0.885+-0.001\left|L_{uckGrade}-231\right|,232 \le L_{uckGrade}<233:0.884+0\left|L_{uckGrade}-232\right|,233 \le L_{uckGrade}<234:0.884+-0.001\left|L_{uckGrade}-233\right|,234 \le L_{uckGrade}<235:0.883+0\left|L_{uckGrade}-234\right|,235 \le L_{uckGrade}<236:0.883+-0.001\left|L_{uckGrade}-235\right|,236 \le L_{uckGrade}<237:0.882+0\left|L_{uckGrade}-236\right|,237 \le L_{uckGrade}<238:0.882+-0.001\left|L_{uckGrade}-237\right|,238 \le L_{uckGrade}<239:0.881+0\left|L_{uckGrade}-238\right|,239 \le L_{uckGrade}<240:0.881+-0.001\left|L_{uckGrade}-239\right|,240 \le L_{uckGrade}<241:0.88+0\left|L_{uckGrade}-240\right|,241 \le L_{uckGrade}<242:0.88+-0.001\left|L_{uckGrade}-241\right|,242 \le L_{uckGrade}<243:0.879+0\left|L_{uckGrade}-242\right|,243 \le L_{uckGrade}<244:0.879+-0.001\left|L_{uckGrade}-243\right|,244 \le L_{uckGrade}<245:0.878+0\left|L_{uckGrade}-244\right|,245 \le L_{uckGrade}<246:0.878+-0.001\left|L_{uckGrade}-245\right|,246 \le L_{uckGrade}<247:0.877+0\left|L_{uckGrade}-246\right|,247 \le L_{uckGrade}<248:0.877+-0.001\left|L_{uckGrade}-247\right|,248 \le L_{uckGrade}<249:0.876+0\left|L_{uckGrade}-248\right|,249 \le L_{uckGrade}<250:0.876+-0.001\left|L_{uckGrade}-249\right|,250 \le L_{uckGrade}<251:0.875+0\left|L_{uckGrade}-250\right|,251 \le L_{uckGrade}<252:0.875+-0.001\left|L_{uckGrade}-251\right|,252 \le L_{uckGrade}<253:0.874+0\left|L_{uckGrade}-252\right|,253 \le L_{uckGrade}<254:0.874+-0.001\left|L_{uckGrade}-253\right|,254 \le L_{uckGrade}<255:0.873+0\left|L_{uckGrade}-254\right|,255 \le L_{uckGrade}<256:0.873+-0.001\left|L_{uckGrade}-255\right|,256 \le L_{uckGrade}<257:0.872+0\left|L_{uckGrade}-256\right|,257 \le L_{uckGrade}<258:0.872+-0.001\left|L_{uckGrade}-257\right|,258 \le L_{uckGrade}<259:0.871+0\left|L_{uckGrade}-258\right|,259 \le L_{uckGrade}<260:0.871+-0.001\left|L_{uckGrade}-259\right|,260 \le L_{uckGrade}<261:0.87+0\left|L_{uckGrade}-260\right|,261 \le L_{uckGrade}<262:0.87+-0.001\left|L_{uckGrade}-261\right|,262 \le L_{uckGrade}<263:0.869+0\left|L_{uckGrade}-262\right|,263 \le L_{uckGrade}<264:0.869+-0.001\left|L_{uckGrade}-263\right|,264 \le L_{uckGrade}<265:0.868+0\left|L_{uckGrade}-264\right|,265 \le L_{uckGrade}<266:0.868+-0.001\left|L_{uckGrade}-265\right|,266 \le L_{uckGrade}<267:0.867+0\left|L_{uckGrade}-266\right|,267 \le L_{uckGrade}<268:0.867+-0.001\left|L_{uckGrade}-267\right|,268 \le L_{uckGrade}<269:0.866+0\left|L_{uckGrade}-268\right|,269 \le L_{uckGrade}<270:0.866+-0.001\left|L_{uckGrade}-269\right|,270 \le L_{uckGrade}<271:0.865+0\left|L_{uckGrade}-270\right|,271 \le L_{uckGrade}<272:0.865+-0.001\left|L_{uckGrade}-271\right|,272 \le L_{uckGrade}<273:0.864+0\left|L_{uckGrade}-272\right|,273 \le L_{uckGrade}<274:0.864+-0.001\left|L_{uckGrade}-273\right|,274 \le L_{uckGrade}<275:0.863+0\left|L_{uckGrade}-274\right|,275 \le L_{uckGrade}<276:0.863+-0.001\left|L_{uckGrade}-275\right|,276 \le L_{uckGrade}<277:0.862+0\left|L_{uckGrade}-276\right|,277 \le L_{uckGrade}<278:0.862+-0.001\left|L_{uckGrade}-277\right|,278 \le L_{uckGrade}<279:0.861+0\left|L_{uckGrade}-278\right|,279 \le L_{uckGrade}<280:0.861+-0.001\left|L_{uckGrade}-279\right|,280 \le L_{uckGrade}<281:0.86+0\left|L_{uckGrade}-280\right|,281 \le L_{uckGrade}<282:0.86+-0.001\left|L_{uckGrade}-281\right|,282 \le L_{uckGrade}<283:0.859+0\left|L_{uckGrade}-282\right|,283 \le L_{uckGrade}<284:0.859+-0.001\left|L_{uckGrade}-283\right|,284 \le L_{uckGrade}<285:0.858+0\left|L_{uckGrade}-284\right|,285 \le L_{uckGrade}<286:0.858+-0.001\left|L_{uckGrade}-285\right|,286 \le L_{uckGrade}<287:0.857+0\left|L_{uckGrade}-286\right|,287 \le L_{uckGrade}<288:0.857+-0.001\left|L_{uckGrade}-287\right|,288 \le L_{uckGrade}<289:0.856+0\left|L_{uckGrade}-288\right|,289 \le L_{uckGrade}<290:0.856+-0.001\left|L_{uckGrade}-289\right|,290 \le L_{uckGrade}<291:0.855+0\left|L_{uckGrade}-290\right|,291 \le L_{uckGrade}<292:0.855+-0.001\left|L_{uckGrade}-291\right|,292 \le L_{uckGrade}<293:0.854+0\left|L_{uckGrade}-292\right|,293 \le L_{uckGrade}<294:0.854+-0.001\left|L_{uckGrade}-293\right|,294 \le L_{uckGrade}<295:0.853+0\left|L_{uckGrade}-294\right|,295 \le L_{uckGrade}<296:0.853+-0.001\left|L_{uckGrade}-295\right|,296 \le L_{uckGrade}<297:0.852+0\left|L_{uckGrade}-296\right|,297 \le L_{uckGrade}<298:0.852+-0.001\left|L_{uckGrade}-297\right|,298 \le L_{uckGrade}<299:0.851+0\left|L_{uckGrade}-298\right|,299 \le L_{uckGrade}<300:0.851+-0.001\left|L_{uckGrade}-299\right|,300 \le L_{uckGrade}<301:0.85+0\left|L_{uckGrade}-300\right|,301 \le L_{uckGrade}<302:0.85+-0.001\left|L_{uckGrade}-301\right|,302 \le L_{uckGrade}<303:0.849+0\left|L_{uckGrade}-302\right|,303 \le L_{uckGrade}<304:0.849+-0.001\left|L_{uckGrade}-303\right|,304 \le L_{uckGrade}<305:0.848+0\left|L_{uckGrade}-304\right|,305 \le L_{uckGrade}<306:0.848+-0.001\left|L_{uckGrade}-305\right|,306 \le L_{uckGrade}<307:0.847+0\left|L_{uckGrade}-306\right|,307 \le L_{uckGrade}<308:0.847+-0.001\left|L_{uckGrade}-307\right|,308 \le L_{uckGrade}<309:0.846+0\left|L_{uckGrade}-308\right|,309 \le L_{uckGrade}<310:0.846+-0.001\left|L_{uckGrade}-309\right|,310 \le L_{uckGrade}<311:0.845+0\left|L_{uckGrade}-310\right|,311 \le L_{uckGrade}<312:0.845+-0.001\left|L_{uckGrade}-311\right|,312 \le L_{uckGrade}<313:0.844+0\left|L_{uckGrade}-312\right|,313 \le L_{uckGrade}<314:0.844+-0.001\left|L_{uckGrade}-313\right|,314 \le L_{uckGrade}<315:0.843+0\left|L_{uckGrade}-314\right|,315 \le L_{uckGrade}<316:0.843+-0.001\left|L_{uckGrade}-315\right|,316 \le L_{uckGrade}<317:0.842+0\left|L_{uckGrade}-316\right|,317 \le L_{uckGrade}<318:0.842+-0.001\left|L_{uckGrade}-317\right|,318 \le L_{uckGrade}<319:0.841+0\left|L_{uckGrade}-318\right|,319 \le L_{uckGrade}<320:0.841+-0.001\left|L_{uckGrade}-319\right|,320 \le L_{uckGrade}<321:0.84+0\left|L_{uckGrade}-320\right|,321 \le L_{uckGrade}<322:0.84+-0.001\left|L_{uckGrade}-321\right|,322 \le L_{uckGrade}<323:0.839+0\left|L_{uckGrade}-322\right|,323 \le L_{uckGrade}<324:0.839+-0.001\left|L_{uckGrade}-323\right|,324 \le L_{uckGrade}<325:0.838+0\left|L_{uckGrade}-324\right|,325 \le L_{uckGrade}<326:0.838+-0.001\left|L_{uckGrade}-325\right|,326 \le L_{uckGrade}<327:0.837+0\left|L_{uckGrade}-326\right|,327 \le L_{uckGrade}<328:0.837+-0.001\left|L_{uckGrade}-327\right|,328 \le L_{uckGrade}<329:0.836+0\left|L_{uckGrade}-328\right|,329 \le L_{uckGrade}<330:0.836+-0.001\left|L_{uckGrade}-329\right|,330 \le L_{uckGrade}<331:0.835+0\left|L_{uckGrade}-330\right|,331 \le L_{uckGrade}<332:0.835+-0.001\left|L_{uckGrade}-331\right|,332 \le L_{uckGrade}<333:0.834+0\left|L_{uckGrade}-332\right|,333 \le L_{uckGrade}<334:0.834+-0.001\left|L_{uckGrade}-333\right|,334 \le L_{uckGrade}<335:0.833+0\left|L_{uckGrade}-334\right|,335 \le L_{uckGrade}<336:0.833+-0.001\left|L_{uckGrade}-335\right|,336 \le L_{uckGrade}<337:0.832+0\left|L_{uckGrade}-336\right|,337 \le L_{uckGrade}<338:0.832+-0.001\left|L_{uckGrade}-337\right|,338 \le L_{uckGrade}<339:0.831+0\left|L_{uckGrade}-338\right|,339 \le L_{uckGrade}<340:0.831+-0.001\left|L_{uckGrade}-339\right|,340 \le L_{uckGrade}<341:0.83+0\left|L_{uckGrade}-340\right|,341 \le L_{uckGrade}<342:0.83+-0.001\left|L_{uckGrade}-341\right|,342 \le L_{uckGrade}<343:0.829+0\left|L_{uckGrade}-342\right|,343 \le L_{uckGrade}<344:0.829+-0.001\left|L_{uckGrade}-343\right|,344 \le L_{uckGrade}<345:0.828+0\left|L_{uckGrade}-344\right|,345 \le L_{uckGrade}<346:0.828+-0.001\left|L_{uckGrade}-345\right|,346 \le L_{uckGrade}<347:0.827+0\left|L_{uckGrade}-346\right|,347 \le L_{uckGrade}<348:0.827+-0.001\left|L_{uckGrade}-347\right|,348 \le L_{uckGrade}<349:0.826+0\left|L_{uckGrade}-348\right|,349 \le L_{uckGrade}<350:0.826+-0.001\left|L_{uckGrade}-349\right|,350 \le L_{uckGrade}<351:0.825+0\left|L_{uckGrade}-350\right|,351 \le L_{uckGrade}<352:0.825+-0.001\left|L_{uckGrade}-351\right|,352 \le L_{uckGrade}<353:0.824+0\left|L_{uckGrade}-352\right|,353 \le L_{uckGrade}<354:0.824+-0.001\left|L_{uckGrade}-353\right|,354 \le L_{uckGrade}<355:0.823+0\left|L_{uckGrade}-354\right|,355 \le L_{uckGrade}<356:0.823+-0.001\left|L_{uckGrade}-355\right|,356 \le L_{uckGrade}<357:0.822+0\left|L_{uckGrade}-356\right|,357 \le L_{uckGrade}<358:0.822+-0.001\left|L_{uckGrade}-357\right|,358 \le L_{uckGrade}<359:0.821+0\left|L_{uckGrade}-358\right|,359 \le L_{uckGrade}<360:0.821+-0.001\left|L_{uckGrade}-359\right|,360 \le L_{uckGrade}<361:0.82+0\left|L_{uckGrade}-360\right|,361 \le L_{uckGrade}<362:0.82+-0.001\left|L_{uckGrade}-361\right|,362 \le L_{uckGrade}<363:0.819+0\left|L_{uckGrade}-362\right|,363 \le L_{uckGrade}<364:0.819+-0.001\left|L_{uckGrade}-363\right|,364 \le L_{uckGrade}<365:0.818+0\left|L_{uckGrade}-364\right|,365 \le L_{uckGrade}<366:0.818+-0.001\left|L_{uckGrade}-365\right|,366 \le L_{uckGrade}<367:0.817+0\left|L_{uckGrade}-366\right|,367 \le L_{uckGrade}<368:0.817+-0.001\left|L_{uckGrade}-367\right|,368 \le L_{uckGrade}<369:0.816+0\left|L_{uckGrade}-368\right|,369 \le L_{uckGrade}<370:0.816+-0.001\left|L_{uckGrade}-369\right|,370 \le L_{uckGrade}<371:0.815+0\left|L_{uckGrade}-370\right|,371 \le L_{uckGrade}<372:0.815+-0.001\left|L_{uckGrade}-371\right|,372 \le L_{uckGrade}<373:0.814+0\left|L_{uckGrade}-372\right|,373 \le L_{uckGrade}<374:0.814+-0.001\left|L_{uckGrade}-373\right|,374 \le L_{uckGrade}<375:0.813+0\left|L_{uckGrade}-374\right|,375 \le L_{uckGrade}<376:0.813+-0.001\left|L_{uckGrade}-375\right|,376 \le L_{uckGrade}<377:0.812+0\left|L_{uckGrade}-376\right|,377 \le L_{uckGrade}<378:0.812+-0.001\left|L_{uckGrade}-377\right|,378 \le L_{uckGrade}<379:0.811+0\left|L_{uckGrade}-378\right|,379 \le L_{uckGrade}<380:0.811+-0.001\left|L_{uckGrade}-379\right|,380 \le L_{uckGrade}<381:0.81+0\left|L_{uckGrade}-380\right|,381 \le L_{uckGrade}<382:0.81+-0.001\left|L_{uckGrade}-381\right|,382 \le L_{uckGrade}<383:0.809+0\left|L_{uckGrade}-382\right|,383 \le L_{uckGrade}<384:0.809+-0.001\left|L_{uckGrade}-383\right|,384 \le L_{uckGrade}<385:0.808+0\left|L_{uckGrade}-384\right|,385 \le L_{uckGrade}<386:0.808+-0.001\left|L_{uckGrade}-385\right|,386 \le L_{uckGrade}<387:0.807+0\left|L_{uckGrade}-386\right|,387 \le L_{uckGrade}<388:0.807+-0.001\left|L_{uckGrade}-387\right|,388 \le L_{uckGrade}<389:0.806+0\left|L_{uckGrade}-388\right|,389 \le L_{uckGrade}<390:0.806+-0.001\left|L_{uckGrade}-389\right|,390 \le L_{uckGrade}<391:0.805+0\left|L_{uckGrade}-390\right|,391 \le L_{uckGrade}<392:0.805+-0.001\left|L_{uckGrade}-391\right|,392 \le L_{uckGrade}<393:0.804+0\left|L_{uckGrade}-392\right|,393 \le L_{uckGrade}<394:0.804+-0.001\left|L_{uckGrade}-393\right|,394 \le L_{uckGrade}<395:0.803+0\left|L_{uckGrade}-394\right|,395 \le L_{uckGrade}<396:0.803+-0.001\left|L_{uckGrade}-395\right|,396 \le L_{uckGrade}<397:0.802+0\left|L_{uckGrade}-396\right|,397 \le L_{uckGrade}<398:0.802+-0.001\left|L_{uckGrade}-397\right|,398 \le L_{uckGrade}<399:0.801+0\left|L_{uckGrade}-398\right|,399 \le L_{uckGrade}<400:0.801+-0.001\left|L_{uckGrade}-399\right|,400 \le L_{uckGrade}<401:0.8+0\left|L_{uckGrade}-400\right|,401 \le L_{uckGrade}<402:0.8+-0.001\left|L_{uckGrade}-401\right|,402 \le L_{uckGrade}<403:0.799+0\left|L_{uckGrade}-402\right|,403 \le L_{uckGrade}<404:0.799+-0.001\left|L_{uckGrade}-403\right|,404 \le L_{uckGrade}<405:0.798+0\left|L_{uckGrade}-404\right|,405 \le L_{uckGrade}<406:0.798+-0.001\left|L_{uckGrade}-405\right|,406 \le L_{uckGrade}<407:0.797+0\left|L_{uckGrade}-406\right|,407 \le L_{uckGrade}<408:0.797+-0.001\left|L_{uckGrade}-407\right|,408 \le L_{uckGrade}<409:0.796+0\left|L_{uckGrade}-408\right|,409 \le L_{uckGrade}<410:0.796+-0.001\left|L_{uckGrade}-409\right|,410 \le L_{uckGrade}<411:0.795+0\left|L_{uckGrade}-410\right|,411 \le L_{uckGrade}<412:0.795+-0.001\left|L_{uckGrade}-411\right|,412 \le L_{uckGrade}<413:0.794+0\left|L_{uckGrade}-412\right|,413 \le L_{uckGrade}<414:0.794+-0.001\left|L_{uckGrade}-413\right|,414 \le L_{uckGrade}<415:0.793+0\left|L_{uckGrade}-414\right|,415 \le L_{uckGrade}<416:0.793+-0.001\left|L_{uckGrade}-415\right|,416 \le L_{uckGrade}<417:0.792+0\left|L_{uckGrade}-416\right|,417 \le L_{uckGrade}<418:0.792+-0.001\left|L_{uckGrade}-417\right|,418 \le L_{uckGrade}<419:0.791+0\left|L_{uckGrade}-418\right|,419 \le L_{uckGrade}<420:0.791+-0.001\left|L_{uckGrade}-419\right|,420 \le L_{uckGrade}<421:0.79+0\left|L_{uckGrade}-420\right|,421 \le L_{uckGrade}<422:0.79+-0.001\left|L_{uckGrade}-421\right|,422 \le L_{uckGrade}<423:0.789+0\left|L_{uckGrade}-422\right|,423 \le L_{uckGrade}<424:0.789+-0.001\left|L_{uckGrade}-423\right|,424 \le L_{uckGrade}<425:0.788+0\left|L_{uckGrade}-424\right|,425 \le L_{uckGrade}<426:0.788+-0.001\left|L_{uckGrade}-425\right|,426 \le L_{uckGrade}<427:0.787+0\left|L_{uckGrade}-426\right|,427 \le L_{uckGrade}<428:0.787+-0.001\left|L_{uckGrade}-427\right|,428 \le L_{uckGrade}<429:0.786+0\left|L_{uckGrade}-428\right|,429 \le L_{uckGrade}<430:0.786+-0.001\left|L_{uckGrade}-429\right|,430 \le L_{uckGrade}<431:0.785+0\left|L_{uckGrade}-430\right|,431 \le L_{uckGrade}<432:0.785+-0.001\left|L_{uckGrade}-431\right|,432 \le L_{uckGrade}<433:0.784+0\left|L_{uckGrade}-432\right|,433 \le L_{uckGrade}<434:0.784+-0.001\left|L_{uckGrade}-433\right|,434 \le L_{uckGrade}<435:0.783+0\left|L_{uckGrade}-434\right|,435 \le L_{uckGrade}<436:0.783+-0.001\left|L_{uckGrade}-435\right|,436 \le L_{uckGrade}<437:0.782+0\left|L_{uckGrade}-436\right|,437 \le L_{uckGrade}<438:0.782+-0.001\left|L_{uckGrade}-437\right|,438 \le L_{uckGrade}<439:0.781+0\left|L_{uckGrade}-438\right|,439 \le L_{uckGrade}<440:0.781+-0.001\left|L_{uckGrade}-439\right|,440 \le L_{uckGrade}<441:0.78+0\left|L_{uckGrade}-440\right|,441 \le L_{uckGrade}<442:0.78+-0.001\left|L_{uckGrade}-441\right|,442 \le L_{uckGrade}<443:0.779+0\left|L_{uckGrade}-442\right|,443 \le L_{uckGrade}<444:0.779+-0.001\left|L_{uckGrade}-443\right|,444 \le L_{uckGrade}<445:0.778+0\left|L_{uckGrade}-444\right|,445 \le L_{uckGrade}<446:0.778+-0.001\left|L_{uckGrade}-445\right|,446 \le L_{uckGrade}<447:0.777+0\left|L_{uckGrade}-446\right|,447 \le L_{uckGrade}<448:0.777+-0.001\left|L_{uckGrade}-447\right|,448 \le L_{uckGrade}<449:0.776+0\left|L_{uckGrade}-448\right|,449 \le L_{uckGrade}<450:0.776+-0.001\left|L_{uckGrade}-449\right|,450 \le L_{uckGrade}<451:0.775+0\left|L_{uckGrade}-450\right|,451 \le L_{uckGrade}<452:0.775+-0.001\left|L_{uckGrade}-451\right|,452 \le L_{uckGrade}<453:0.774+0\left|L_{uckGrade}-452\right|,453 \le L_{uckGrade}<454:0.774+-0.001\left|L_{uckGrade}-453\right|,454 \le L_{uckGrade}<455:0.773+0\left|L_{uckGrade}-454\right|,455 \le L_{uckGrade}<456:0.773+-0.001\left|L_{uckGrade}-455\right|,456 \le L_{uckGrade}<457:0.772+0\left|L_{uckGrade}-456\right|,457 \le L_{uckGrade}<458:0.772+-0.001\left|L_{uckGrade}-457\right|,458 \le L_{uckGrade}<459:0.771+0\left|L_{uckGrade}-458\right|,459 \le L_{uckGrade}<460:0.771+-0.001\left|L_{uckGrade}-459\right|,460 \le L_{uckGrade}<461:0.77+0\left|L_{uckGrade}-460\right|,461 \le L_{uckGrade}<462:0.77+-0.001\left|L_{uckGrade}-461\right|,462 \le L_{uckGrade}<463:0.769+0\left|L_{uckGrade}-462\right|,463 \le L_{uckGrade}<464:0.769+-0.001\left|L_{uckGrade}-463\right|,464 \le L_{uckGrade}<465:0.768+0\left|L_{uckGrade}-464\right|,465 \le L_{uckGrade}<466:0.768+-0.001\left|L_{uckGrade}-465\right|,466 \le L_{uckGrade}<467:0.767+0\left|L_{uckGrade}-466\right|,467 \le L_{uckGrade}<468:0.767+-0.001\left|L_{uckGrade}-467\right|,468 \le L_{uckGrade}<469:0.766+0\left|L_{uckGrade}-468\right|,469 \le L_{uckGrade}<470:0.766+-0.001\left|L_{uckGrade}-469\right|,470 \le L_{uckGrade}<471:0.765+0\left|L_{uckGrade}-470\right|,471 \le L_{uckGrade}<472:0.765+-0.001\left|L_{uckGrade}-471\right|,472 \le L_{uckGrade}<473:0.764+0\left|L_{uckGrade}-472\right|,473 \le L_{uckGrade}<474:0.764+-0.001\left|L_{uckGrade}-473\right|,474 \le L_{uckGrade}<475:0.763+0\left|L_{uckGrade}-474\right|,475 \le L_{uckGrade}<476:0.763+-0.001\left|L_{uckGrade}-475\right|,476 \le L_{uckGrade}<477:0.762+0\left|L_{uckGrade}-476\right|,477 \le L_{uckGrade}<478:0.762+-0.001\left|L_{uckGrade}-477\right|,478 \le L_{uckGrade}<479:0.761+0\left|L_{uckGrade}-478\right|,479 \le L_{uckGrade}<480:0.761+-0.001\left|L_{uckGrade}-479\right|,480 \le L_{uckGrade}<481:0.76+0\left|L_{uckGrade}-480\right|,481 \le L_{uckGrade}<482:0.76+-0.001\left|L_{uckGrade}-481\right|,482 \le L_{uckGrade}<483:0.759+0\left|L_{uckGrade}-482\right|,483 \le L_{uckGrade}<484:0.759+-0.001\left|L_{uckGrade}-483\right|,484 \le L_{uckGrade}<485:0.758+0\left|L_{uckGrade}-484\right|,485 \le L_{uckGrade}<486:0.758+-0.001\left|L_{uckGrade}-485\right|,486 \le L_{uckGrade}<487:0.757+0\left|L_{uckGrade}-486\right|,487 \le L_{uckGrade}<488:0.757+-0.001\left|L_{uckGrade}-487\right|,488 \le L_{uckGrade}<489:0.756+0\left|L_{uckGrade}-488\right|,489 \le L_{uckGrade}<490:0.756+-0.001\left|L_{uckGrade}-489\right|,490 \le L_{uckGrade}<491:0.755+0\left|L_{uckGrade}-490\right|,491 \le L_{uckGrade}<492:0.755+-0.001\left|L_{uckGrade}-491\right|,492 \le L_{uckGrade}<493:0.754+0\left|L_{uckGrade}-492\right|,493 \le L_{uckGrade}<494:0.754+-0.001\left|L_{uckGrade}-493\right|,494 \le L_{uckGrade}<495:0.753+0\left|L_{uckGrade}-494\right|,495 \le L_{uckGrade}<496:0.753+-0.001\left|L_{uckGrade}-495\right|,496 \le L_{uckGrade}<497:0.752+0\left|L_{uckGrade}-496\right|,497 \le L_{uckGrade}<498:0.752+-0.001\left|L_{uckGrade}-497\right|,498 \le L_{uckGrade}<499:0.751+0\left|L_{uckGrade}-498\right|,499 \le L_{uckGrade}<500:0.751+-0.001\left|L_{uckGrade}-499\right|\right\}

See Example for how to use.


LaTeX Formula

Can be pasted into Desmos or other LaTeX editors for quick use of the equation.

Triple click to select all. Note: Some browsers will add an extra return carriage (line end) after the formula. Remove it before pasting for best results.

L_{uckGrade03}(L_{uckGrade})=\left\{0 \le L_{uckGrade}<500:1+0\left|L_{uckGrade}-0\right|\right\}

See Example for how to use.


LaTeX Formula

Can be pasted into Desmos or other LaTeX editors for quick use of the equation.

Triple click to select all. Note: Some browsers will add an extra return carriage (line end) after the formula. Remove it before pasting for best results.

L_{uckGrade04}(L_{uckGrade})=\left\{0 \le L_{uckGrade}<7:1+0.01\left|L_{uckGrade}-0\right|,7 \le L_{uckGrade}<8:1.07+0.009\left|L_{uckGrade}-7\right|,8 \le L_{uckGrade}<12:1.079+0.01\left|L_{uckGrade}-8\right|,12 \le L_{uckGrade}<13:1.119+0.009\left|L_{uckGrade}-12\right|,13 \le L_{uckGrade}<16:1.128+0.01\left|L_{uckGrade}-13\right|,16 \le L_{uckGrade}<17:1.158+0.009\left|L_{uckGrade}-16\right|,17 \le L_{uckGrade}<19:1.167+0.01\left|L_{uckGrade}-17\right|,19 \le L_{uckGrade}<20:1.187+0.009\left|L_{uckGrade}-19\right|,20 \le L_{uckGrade}<21:1.196+0.01\left|L_{uckGrade}-20\right|,21 \le L_{uckGrade}<22:1.206+0.009\left|L_{uckGrade}-21\right|,22 \le L_{uckGrade}<23:1.215+0.01\left|L_{uckGrade}-22\right|,23 \le L_{uckGrade}<24:1.225+0.009\left|L_{uckGrade}-23\right|,24 \le L_{uckGrade}<26:1.234+0.01\left|L_{uckGrade}-24\right|,26 \le L_{uckGrade}<28:1.254+0.009\left|L_{uckGrade}-26\right|,28 \le L_{uckGrade}<29:1.272+0.01\left|L_{uckGrade}-28\right|,29 \le L_{uckGrade}<30:1.282+0.009\left|L_{uckGrade}-29\right|,30 \le L_{uckGrade}<31:1.291+0.01\left|L_{uckGrade}-30\right|,31 \le L_{uckGrade}<33:1.301+0.009\left|L_{uckGrade}-31\right|,33 \le L_{uckGrade}<34:1.319+0.01\left|L_{uckGrade}-33\right|,34 \le L_{uckGrade}<36:1.329+0.009\left|L_{uckGrade}-34\right|,36 \le L_{uckGrade}<37:1.347+0.01\left|L_{uckGrade}-36\right|,37 \le L_{uckGrade}<40:1.357+0.009\left|L_{uckGrade}-37\right|,40 \le L_{uckGrade}<41:1.384+0.01\left|L_{uckGrade}-40\right|,41 \le L_{uckGrade}<49:1.394+0.009\left|L_{uckGrade}-41\right|,49 \le L_{uckGrade}<50:1.466+0.01\left|L_{uckGrade}-49\right|,50 \le L_{uckGrade}<51:1.476+0.009\left|L_{uckGrade}-50\right|,51 \le L_{uckGrade}<52:1.485+0.008\left|L_{uckGrade}-51\right|,52 \le L_{uckGrade}<60:1.493+0.009\left|L_{uckGrade}-52\right|,60 \le L_{uckGrade}<61:1.565+0.008\left|L_{uckGrade}-60\right|,61 \le L_{uckGrade}<64:1.573+0.009\left|L_{uckGrade}-61\right|,64 \le L_{uckGrade}<65:1.6+0.008\left|L_{uckGrade}-64\right|,65 \le L_{uckGrade}<67:1.608+0.009\left|L_{uckGrade}-65\right|,67 \le L_{uckGrade}<68:1.626+0.008\left|L_{uckGrade}-67\right|,68 \le L_{uckGrade}<70:1.634+0.009\left|L_{uckGrade}-68\right|,70 \le L_{uckGrade}<71:1.652+0.008\left|L_{uckGrade}-70\right|,71 \le L_{uckGrade}<72:1.66+0.009\left|L_{uckGrade}-71\right|,72 \le L_{uckGrade}<73:1.669+0.008\left|L_{uckGrade}-72\right|,73 \le L_{uckGrade}<75:1.677+0.009\left|L_{uckGrade}-73\right|,75 \le L_{uckGrade}<77:1.695+0.008\left|L_{uckGrade}-75\right|,77 \le L_{uckGrade}<78:1.711+0.009\left|L_{uckGrade}-77\right|,78 \le L_{uckGrade}<79:1.72+0.008\left|L_{uckGrade}-78\right|,79 \le L_{uckGrade}<80:1.728+0.009\left|L_{uckGrade}-79\right|,80 \le L_{uckGrade}<81:1.737+0.008\left|L_{uckGrade}-80\right|,81 \le L_{uckGrade}<82:1.745+0.009\left|L_{uckGrade}-81\right|,82 \le L_{uckGrade}<84:1.754+0.008\left|L_{uckGrade}-82\right|,84 \le L_{uckGrade}<85:1.77+0.009\left|L_{uckGrade}-84\right|,85 \le L_{uckGrade}<88:1.779+0.008\left|L_{uckGrade}-85\right|,88 \le L_{uckGrade}<89:1.803+0.009\left|L_{uckGrade}-88\right|,89 \le L_{uckGrade}<93:1.812+0.008\left|L_{uckGrade}-89\right|,93 \le L_{uckGrade}<94:1.844+0.009\left|L_{uckGrade}-93\right|,94 \le L_{uckGrade}<107:1.853+0.008\left|L_{uckGrade}-94\right|,107 \le L_{uckGrade}<108:1.957+0.007\left|L_{uckGrade}-107\right|,108 \le L_{uckGrade}<112:1.964+0.008\left|L_{uckGrade}-108\right|,112 \le L_{uckGrade}<113:1.996+0.007\left|L_{uckGrade}-112\right|,113 \le L_{uckGrade}<116:2.003+0.008\left|L_{uckGrade}-113\right|,116 \le L_{uckGrade}<117:2.027+0.007\left|L_{uckGrade}-116\right|,117 \le L_{uckGrade}<119:2.034+0.008\left|L_{uckGrade}-117\right|,119 \le L_{uckGrade}<120:2.05+0.007\left|L_{uckGrade}-119\right|,120 \le L_{uckGrade}<121:2.057+0.008\left|L_{uckGrade}-120\right|,121 \le L_{uckGrade}<122:2.065+0.007\left|L_{uckGrade}-121\right|,122 \le L_{uckGrade}<123:2.072+0.008\left|L_{uckGrade}-122\right|,123 \le L_{uckGrade}<124:2.08+0.007\left|L_{uckGrade}-123\right|,124 \le L_{uckGrade}<126:2.087+0.008\left|L_{uckGrade}-124\right|,126 \le L_{uckGrade}<128:2.103+0.007\left|L_{uckGrade}-126\right|,128 \le L_{uckGrade}<129:2.117+0.008\left|L_{uckGrade}-128\right|,129 \le L_{uckGrade}<130:2.125+0.007\left|L_{uckGrade}-129\right|,130 \le L_{uckGrade}<131:2.132+0.008\left|L_{uckGrade}-130\right|,131 \le L_{uckGrade}<133:2.14+0.007\left|L_{uckGrade}-131\right|,133 \le L_{uckGrade}<134:2.154+0.008\left|L_{uckGrade}-133\right|,134 \le L_{uckGrade}<136:2.162+0.007\left|L_{uckGrade}-134\right|,136 \le L_{uckGrade}<137:2.176+0.008\left|L_{uckGrade}-136\right|,137 \le L_{uckGrade}<140:2.184+0.007\left|L_{uckGrade}-137\right|,140 \le L_{uckGrade}<141:2.205+0.008\left|L_{uckGrade}-140\right|,141 \le L_{uckGrade}<149:2.213+0.007\left|L_{uckGrade}-141\right|,149 \le L_{uckGrade}<150:2.269+0.008\left|L_{uckGrade}-149\right|,150 \le L_{uckGrade}<151:2.277+0.007\left|L_{uckGrade}-150\right|,151 \le L_{uckGrade}<152:2.284+0.006\left|L_{uckGrade}-151\right|,152 \le L_{uckGrade}<160:2.29+0.007\left|L_{uckGrade}-152\right|,160 \le L_{uckGrade}<161:2.346+0.006\left|L_{uckGrade}-160\right|,161 \le L_{uckGrade}<164:2.352+0.007\left|L_{uckGrade}-161\right|,164 \le L_{uckGrade}<165:2.373+0.006\left|L_{uckGrade}-164\right|,165 \le L_{uckGrade}<167:2.379+0.007\left|L_{uckGrade}-165\right|,167 \le L_{uckGrade}<168:2.393+0.006\left|L_{uckGrade}-167\right|,168 \le L_{uckGrade}<170:2.399+0.007\left|L_{uckGrade}-168\right|,170 \le L_{uckGrade}<171:2.413+0.006\left|L_{uckGrade}-170\right|,171 \le L_{uckGrade}<172:2.419+0.007\left|L_{uckGrade}-171\right|,172 \le L_{uckGrade}<173:2.426+0.006\left|L_{uckGrade}-172\right|,173 \le L_{uckGrade}<175:2.432+0.007\left|L_{uckGrade}-173\right|,175 \le L_{uckGrade}<177:2.446+0.006\left|L_{uckGrade}-175\right|,177 \le L_{uckGrade}<178:2.458+0.007\left|L_{uckGrade}-177\right|,178 \le L_{uckGrade}<179:2.465+0.006\left|L_{uckGrade}-178\right|,179 \le L_{uckGrade}<180:2.471+0.007\left|L_{uckGrade}-179\right|,180 \le L_{uckGrade}<181:2.478+0.006\left|L_{uckGrade}-180\right|,181 \le L_{uckGrade}<182:2.484+0.007\left|L_{uckGrade}-181\right|,182 \le L_{uckGrade}<184:2.491+0.006\left|L_{uckGrade}-182\right|,184 \le L_{uckGrade}<185:2.503+0.007\left|L_{uckGrade}-184\right|,185 \le L_{uckGrade}<188:2.51+0.006\left|L_{uckGrade}-185\right|,188 \le L_{uckGrade}<189:2.528+0.007\left|L_{uckGrade}-188\right|,189 \le L_{uckGrade}<193:2.535+0.006\left|L_{uckGrade}-189\right|,193 \le L_{uckGrade}<194:2.559+0.007\left|L_{uckGrade}-193\right|,194 \le L_{uckGrade}<207:2.566+0.006\left|L_{uckGrade}-194\right|,207 \le L_{uckGrade}<208:2.644+0.005\left|L_{uckGrade}-207\right|,208 \le L_{uckGrade}<212:2.649+0.006\left|L_{uckGrade}-208\right|,212 \le L_{uckGrade}<213:2.673+0.005\left|L_{uckGrade}-212\right|,213 \le L_{uckGrade}<216:2.678+0.006\left|L_{uckGrade}-213\right|,216 \le L_{uckGrade}<217:2.696+0.005\left|L_{uckGrade}-216\right|,217 \le L_{uckGrade}<219:2.701+0.006\left|L_{uckGrade}-217\right|,219 \le L_{uckGrade}<220:2.713+0.005\left|L_{uckGrade}-219\right|,220 \le L_{uckGrade}<221:2.718+0.006\left|L_{uckGrade}-220\right|,221 \le L_{uckGrade}<222:2.724+0.005\left|L_{uckGrade}-221\right|,222 \le L_{uckGrade}<223:2.729+0.006\left|L_{uckGrade}-222\right|,223 \le L_{uckGrade}<224:2.735+0.005\left|L_{uckGrade}-223\right|,224 \le L_{uckGrade}<226:2.74+0.006\left|L_{uckGrade}-224\right|,226 \le L_{uckGrade}<228:2.752+0.005\left|L_{uckGrade}-226\right|,228 \le L_{uckGrade}<229:2.762+0.006\left|L_{uckGrade}-228\right|,229 \le L_{uckGrade}<230:2.768+0.005\left|L_{uckGrade}-229\right|,230 \le L_{uckGrade}<231:2.773+0.006\left|L_{uckGrade}-230\right|,231 \le L_{uckGrade}<233:2.779+0.005\left|L_{uckGrade}-231\right|,233 \le L_{uckGrade}<234:2.789+0.006\left|L_{uckGrade}-233\right|,234 \le L_{uckGrade}<236:2.795+0.005\left|L_{uckGrade}-234\right|,236 \le L_{uckGrade}<237:2.805+0.006\left|L_{uckGrade}-236\right|,237 \le L_{uckGrade}<240:2.811+0.005\left|L_{uckGrade}-237\right|,240 \le L_{uckGrade}<241:2.826+0.006\left|L_{uckGrade}-240\right|,241 \le L_{uckGrade}<249:2.832+0.005\left|L_{uckGrade}-241\right|,249 \le L_{uckGrade}<250:2.872+0.006\left|L_{uckGrade}-249\right|,250 \le L_{uckGrade}<251:2.878+0.005\left|L_{uckGrade}-250\right|,251 \le L_{uckGrade}<252:2.883+0.004\left|L_{uckGrade}-251\right|,252 \le L_{uckGrade}<260:2.887+0.005\left|L_{uckGrade}-252\right|,260 \le L_{uckGrade}<261:2.927+0.004\left|L_{uckGrade}-260\right|,261 \le L_{uckGrade}<264:2.931+0.005\left|L_{uckGrade}-261\right|,264 \le L_{uckGrade}<265:2.946+0.004\left|L_{uckGrade}-264\right|,265 \le L_{uckGrade}<267:2.95+0.005\left|L_{uckGrade}-265\right|,267 \le L_{uckGrade}<268:2.96+0.004\left|L_{uckGrade}-267\right|,268 \le L_{uckGrade}<270:2.964+0.005\left|L_{uckGrade}-268\right|,270 \le L_{uckGrade}<271:2.974+0.004\left|L_{uckGrade}-270\right|,271 \le L_{uckGrade}<272:2.978+0.005\left|L_{uckGrade}-271\right|,272 \le L_{uckGrade}<273:2.983+0.004\left|L_{uckGrade}-272\right|,273 \le L_{uckGrade}<275:2.987+0.005\left|L_{uckGrade}-273\right|,275 \le L_{uckGrade}<277:2.997+0.004\left|L_{uckGrade}-275\right|,277 \le L_{uckGrade}<278:3.005+0.005\left|L_{uckGrade}-277\right|,278 \le L_{uckGrade}<279:3.01+0.004\left|L_{uckGrade}-278\right|,279 \le L_{uckGrade}<280:3.014+0.005\left|L_{uckGrade}-279\right|,280 \le L_{uckGrade}<281:3.019+0.004\left|L_{uckGrade}-280\right|,281 \le L_{uckGrade}<282:3.023+0.005\left|L_{uckGrade}-281\right|,282 \le L_{uckGrade}<284:3.028+0.004\left|L_{uckGrade}-282\right|,284 \le L_{uckGrade}<285:3.036+0.005\left|L_{uckGrade}-284\right|,285 \le L_{uckGrade}<288:3.041+0.004\left|L_{uckGrade}-285\right|,288 \le L_{uckGrade}<289:3.053+0.005\left|L_{uckGrade}-288\right|,289 \le L_{uckGrade}<293:3.058+0.004\left|L_{uckGrade}-289\right|,293 \le L_{uckGrade}<294:3.074+0.005\left|L_{uckGrade}-293\right|,294 \le L_{uckGrade}<307:3.079+0.004\left|L_{uckGrade}-294\right|,307 \le L_{uckGrade}<308:3.131+0.003\left|L_{uckGrade}-307\right|,308 \le L_{uckGrade}<312:3.134+0.004\left|L_{uckGrade}-308\right|,312 \le L_{uckGrade}<313:3.15+0.003\left|L_{uckGrade}-312\right|,313 \le L_{uckGrade}<316:3.153+0.004\left|L_{uckGrade}-313\right|,316 \le L_{uckGrade}<317:3.165+0.003\left|L_{uckGrade}-316\right|,317 \le L_{uckGrade}<319:3.168+0.004\left|L_{uckGrade}-317\right|,319 \le L_{uckGrade}<320:3.176+0.003\left|L_{uckGrade}-319\right|,320 \le L_{uckGrade}<321:3.179+0.004\left|L_{uckGrade}-320\right|,321 \le L_{uckGrade}<322:3.183+0.003\left|L_{uckGrade}-321\right|,322 \le L_{uckGrade}<323:3.186+0.004\left|L_{uckGrade}-322\right|,323 \le L_{uckGrade}<324:3.19+0.003\left|L_{uckGrade}-323\right|,324 \le L_{uckGrade}<326:3.193+0.004\left|L_{uckGrade}-324\right|,326 \le L_{uckGrade}<328:3.201+0.003\left|L_{uckGrade}-326\right|,328 \le L_{uckGrade}<329:3.207+0.004\left|L_{uckGrade}-328\right|,329 \le L_{uckGrade}<330:3.211+0.003\left|L_{uckGrade}-329\right|,330 \le L_{uckGrade}<331:3.214+0.004\left|L_{uckGrade}-330\right|,331 \le L_{uckGrade}<333:3.218+0.003\left|L_{uckGrade}-331\right|,333 \le L_{uckGrade}<334:3.224+0.004\left|L_{uckGrade}-333\right|,334 \le L_{uckGrade}<336:3.228+0.003\left|L_{uckGrade}-334\right|,336 \le L_{uckGrade}<337:3.234+0.004\left|L_{uckGrade}-336\right|,337 \le L_{uckGrade}<340:3.238+0.003\left|L_{uckGrade}-337\right|,340 \le L_{uckGrade}<341:3.247+0.004\left|L_{uckGrade}-340\right|,341 \le L_{uckGrade}<349:3.251+0.003\left|L_{uckGrade}-341\right|,349 \le L_{uckGrade}<350:3.275+0.004\left|L_{uckGrade}-349\right|,350 \le L_{uckGrade}<351:3.279+0.003\left|L_{uckGrade}-350\right|,351 \le L_{uckGrade}<352:3.282+0.002\left|L_{uckGrade}-351\right|,352 \le L_{uckGrade}<360:3.284+0.003\left|L_{uckGrade}-352\right|,360 \le L_{uckGrade}<361:3.308+0.002\left|L_{uckGrade}-360\right|,361 \le L_{uckGrade}<364:3.31+0.003\left|L_{uckGrade}-361\right|,364 \le L_{uckGrade}<365:3.319+0.002\left|L_{uckGrade}-364\right|,365 \le L_{uckGrade}<367:3.321+0.003\left|L_{uckGrade}-365\right|,367 \le L_{uckGrade}<368:3.327+0.002\left|L_{uckGrade}-367\right|,368 \le L_{uckGrade}<370:3.329+0.003\left|L_{uckGrade}-368\right|,370 \le L_{uckGrade}<371:3.335+0.002\left|L_{uckGrade}-370\right|,371 \le L_{uckGrade}<372:3.337+0.003\left|L_{uckGrade}-371\right|,372 \le L_{uckGrade}<373:3.34+0.002\left|L_{uckGrade}-372\right|,373 \le L_{uckGrade}<375:3.342+0.003\left|L_{uckGrade}-373\right|,375 \le L_{uckGrade}<377:3.348+0.002\left|L_{uckGrade}-375\right|,377 \le L_{uckGrade}<378:3.352+0.003\left|L_{uckGrade}-377\right|,378 \le L_{uckGrade}<379:3.355+0.002\left|L_{uckGrade}-378\right|,379 \le L_{uckGrade}<380:3.357+0.003\left|L_{uckGrade}-379\right|,380 \le L_{uckGrade}<381:3.36+0.002\left|L_{uckGrade}-380\right|,381 \le L_{uckGrade}<382:3.362+0.003\left|L_{uckGrade}-381\right|,382 \le L_{uckGrade}<384:3.365+0.002\left|L_{uckGrade}-382\right|,384 \le L_{uckGrade}<385:3.369+0.003\left|L_{uckGrade}-384\right|,385 \le L_{uckGrade}<388:3.372+0.002\left|L_{uckGrade}-385\right|,388 \le L_{uckGrade}<389:3.378+0.003\left|L_{uckGrade}-388\right|,389 \le L_{uckGrade}<393:3.381+0.002\left|L_{uckGrade}-389\right|,393 \le L_{uckGrade}<394:3.389+0.003\left|L_{uckGrade}-393\right|,394 \le L_{uckGrade}<407:3.392+0.002\left|L_{uckGrade}-394\right|,407 \le L_{uckGrade}<408:3.418+0.001\left|L_{uckGrade}-407\right|,408 \le L_{uckGrade}<412:3.419+0.002\left|L_{uckGrade}-408\right|,412 \le L_{uckGrade}<413:3.427+0.001\left|L_{uckGrade}-412\right|,413 \le L_{uckGrade}<416:3.428+0.002\left|L_{uckGrade}-413\right|,416 \le L_{uckGrade}<417:3.434+0.001\left|L_{uckGrade}-416\right|,417 \le L_{uckGrade}<419:3.435+0.002\left|L_{uckGrade}-417\right|,419 \le L_{uckGrade}<420:3.439+0.001\left|L_{uckGrade}-419\right|,420 \le L_{uckGrade}<421:3.44+0.002\left|L_{uckGrade}-420\right|,421 \le L_{uckGrade}<422:3.442+0.001\left|L_{uckGrade}-421\right|,422 \le L_{uckGrade}<423:3.443+0.002\left|L_{uckGrade}-422\right|,423 \le L_{uckGrade}<424:3.445+0.001\left|L_{uckGrade}-423\right|,424 \le L_{uckGrade}<426:3.446+0.002\left|L_{uckGrade}-424\right|,426 \le L_{uckGrade}<428:3.45+0.001\left|L_{uckGrade}-426\right|,428 \le L_{uckGrade}<429:3.452+0.002\left|L_{uckGrade}-428\right|,429 \le L_{uckGrade}<430:3.454+0.001\left|L_{uckGrade}-429\right|,430 \le L_{uckGrade}<431:3.455+0.002\left|L_{uckGrade}-430\right|,431 \le L_{uckGrade}<433:3.457+0.001\left|L_{uckGrade}-431\right|,433 \le L_{uckGrade}<434:3.459+0.002\left|L_{uckGrade}-433\right|,434 \le L_{uckGrade}<436:3.461+0.001\left|L_{uckGrade}-434\right|,436 \le L_{uckGrade}<437:3.463+0.002\left|L_{uckGrade}-436\right|,437 \le L_{uckGrade}<440:3.465+0.001\left|L_{uckGrade}-437\right|,440 \le L_{uckGrade}<441:3.468+0.002\left|L_{uckGrade}-440\right|,441 \le L_{uckGrade}<449:3.47+0.001\left|L_{uckGrade}-441\right|,449 \le L_{uckGrade}<450:3.478+0.002\left|L_{uckGrade}-449\right|,450 \le L_{uckGrade}<451:3.48+0.001\left|L_{uckGrade}-450\right|,451 \le L_{uckGrade}<452:3.481+0\left|L_{uckGrade}-451\right|,452 \le L_{uckGrade}<460:3.481+0.001\left|L_{uckGrade}-452\right|,460 \le L_{uckGrade}<461:3.489+0\left|L_{uckGrade}-460\right|,461 \le L_{uckGrade}<464:3.489+0.001\left|L_{uckGrade}-461\right|,464 \le L_{uckGrade}<465:3.492+0\left|L_{uckGrade}-464\right|,465 \le L_{uckGrade}<467:3.492+0.001\left|L_{uckGrade}-465\right|,467 \le L_{uckGrade}<468:3.494+0\left|L_{uckGrade}-467\right|,468 \le L_{uckGrade}<470:3.494+0.001\left|L_{uckGrade}-468\right|,470 \le L_{uckGrade}<471:3.496+0\left|L_{uckGrade}-470\right|,471 \le L_{uckGrade}<472:3.496+0.001\left|L_{uckGrade}-471\right|,472 \le L_{uckGrade}<473:3.497+0\left|L_{uckGrade}-472\right|,473 \le L_{uckGrade}<475:3.497+0.001\left|L_{uckGrade}-473\right|,475 \le L_{uckGrade}<477:3.499+0\left|L_{uckGrade}-475\right|,477 \le L_{uckGrade}<478:3.499+0.001\left|L_{uckGrade}-477\right|,478 \le L_{uckGrade}<479:3.5+0\left|L_{uckGrade}-478\right|,479 \le L_{uckGrade}<480:3.5+0.001\left|L_{uckGrade}-479\right|,480 \le L_{uckGrade}<481:3.501+0\left|L_{uckGrade}-480\right|,481 \le L_{uckGrade}<482:3.501+0.001\left|L_{uckGrade}-481\right|,482 \le L_{uckGrade}<484:3.502+0\left|L_{uckGrade}-482\right|,484 \le L_{uckGrade}<485:3.502+0.001\left|L_{uckGrade}-484\right|,485 \le L_{uckGrade}<488:3.503+0\left|L_{uckGrade}-485\right|,488 \le L_{uckGrade}<489:3.503+0.001\left|L_{uckGrade}-488\right|,489 \le L_{uckGrade}<493:3.504+0\left|L_{uckGrade}-489\right|,493 \le L_{uckGrade}<494:3.504+0.001\left|L_{uckGrade}-493\right|,494 \le L_{uckGrade}<500:3.505+0\left|L_{uckGrade}-494\right|\right\}

See Example for how to use.


LaTeX Formula

Can be pasted into Desmos or other LaTeX editors for quick use of the equation.

Triple click to select all. Note: Some browsers will add an extra return carriage (line end) after the formula. Remove it before pasting for best results.

L_{uckGrade05}(L_{uckGrade})=\left\{0 \le L_{uckGrade}<1:1+0.012\left|L_{uckGrade}-0\right|,1 \le L_{uckGrade}<3:1.012+0.011\left|L_{uckGrade}-1\right|,3 \le L_{uckGrade}<4:1.034+0.012\left|L_{uckGrade}-3\right|,4 \le L_{uckGrade}<5:1.046+0.011\left|L_{uckGrade}-4\right|,5 \le L_{uckGrade}<6:1.057+0.012\left|L_{uckGrade}-5\right|,6 \le L_{uckGrade}<8:1.069+0.011\left|L_{uckGrade}-6\right|,8 \le L_{uckGrade}<9:1.091+0.012\left|L_{uckGrade}-8\right|,9 \le L_{uckGrade}<12:1.103+0.011\left|L_{uckGrade}-9\right|,12 \le L_{uckGrade}<13:1.136+0.012\left|L_{uckGrade}-12\right|,13 \le L_{uckGrade}<18:1.148+0.011\left|L_{uckGrade}-13\right|,18 \le L_{uckGrade}<19:1.203+0.012\left|L_{uckGrade}-18\right|,19 \le L_{uckGrade}<26:1.215+0.011\left|L_{uckGrade}-19\right|,26 \le L_{uckGrade}<27:1.292+0.01\left|L_{uckGrade}-26\right|,27 \le L_{uckGrade}<32:1.302+0.011\left|L_{uckGrade}-27\right|,32 \le L_{uckGrade}<33:1.357+0.01\left|L_{uckGrade}-32\right|,33 \le L_{uckGrade}<36:1.367+0.011\left|L_{uckGrade}-33\right|,36 \le L_{uckGrade}<37:1.4+0.01\left|L_{uckGrade}-36\right|,37 \le L_{uckGrade}<38:1.41+0.011\left|L_{uckGrade}-37\right|,38 \le L_{uckGrade}<39:1.421+0.01\left|L_{uckGrade}-38\right|,39 \le L_{uckGrade}<41:1.431+0.011\left|L_{uckGrade}-39\right|,41 \le L_{uckGrade}<42:1.453+0.01\left|L_{uckGrade}-41\right|,42 \le L_{uckGrade}<43:1.463+0.011\left|L_{uckGrade}-42\right|,43 \le L_{uckGrade}<44:1.474+0.01\left|L_{uckGrade}-43\right|,44 \le L_{uckGrade}<45:1.484+0.011\left|L_{uckGrade}-44\right|,45 \le L_{uckGrade}<46:1.495+0.01\left|L_{uckGrade}-45\right|,46 \le L_{uckGrade}<47:1.505+0.011\left|L_{uckGrade}-46\right|,47 \le L_{uckGrade}<49:1.516+0.01\left|L_{uckGrade}-47\right|,49 \le L_{uckGrade}<50:1.536+0.011\left|L_{uckGrade}-49\right|,50 \le L_{uckGrade}<51:1.547+0.01\left|L_{uckGrade}-50\right|,51 \le L_{uckGrade}<52:1.557+0.011\left|L_{uckGrade}-51\right|,52 \le L_{uckGrade}<55:1.568+0.01\left|L_{uckGrade}-52\right|,55 \le L_{uckGrade}<56:1.598+0.011\left|L_{uckGrade}-55\right|,56 \le L_{uckGrade}<61:1.609+0.01\left|L_{uckGrade}-56\right|,61 \le L_{uckGrade}<62:1.659+0.011\left|L_{uckGrade}-61\right|,62 \le L_{uckGrade}<69:1.67+0.01\left|L_{uckGrade}-62\right|,69 \le L_{uckGrade}<70:1.74+0.009\left|L_{uckGrade}-69\right|,70 \le L_{uckGrade}<75:1.749+0.01\left|L_{uckGrade}-70\right|,75 \le L_{uckGrade}<76:1.799+0.009\left|L_{uckGrade}-75\right|,76 \le L_{uckGrade}<79:1.808+0.01\left|L_{uckGrade}-76\right|,79 \le L_{uckGrade}<80:1.838+0.009\left|L_{uckGrade}-79\right|,80 \le L_{uckGrade}<82:1.847+0.01\left|L_{uckGrade}-80\right|,82 \le L_{uckGrade}<83:1.867+0.009\left|L_{uckGrade}-82\right|,83 \le L_{uckGrade}<84:1.876+0.01\left|L_{uckGrade}-83\right|,84 \le L_{uckGrade}<85:1.886+0.009\left|L_{uckGrade}-84\right|,85 \le L_{uckGrade}<86:1.895+0.01\left|L_{uckGrade}-85\right|,86 \le L_{uckGrade}<87:1.905+0.009\left|L_{uckGrade}-86\right|,87 \le L_{uckGrade}<88:1.914+0.01\left|L_{uckGrade}-87\right|,88 \le L_{uckGrade}<89:1.924+0.009\left|L_{uckGrade}-88\right|,89 \le L_{uckGrade}<90:1.933+0.01\left|L_{uckGrade}-89\right|,90 \le L_{uckGrade}<91:1.943+0.009\left|L_{uckGrade}-90\right|,91 \le L_{uckGrade}<92:1.952+0.01\left|L_{uckGrade}-91\right|,92 \le L_{uckGrade}<94:1.962+0.009\left|L_{uckGrade}-92\right|,94 \le L_{uckGrade}<95:1.98+0.01\left|L_{uckGrade}-94\right|,95 \le L_{uckGrade}<97:1.99+0.009\left|L_{uckGrade}-95\right|,97 \le L_{uckGrade}<98:2.008+0.01\left|L_{uckGrade}-97\right|,98 \le L_{uckGrade}<101:2.018+0.009\left|L_{uckGrade}-98\right|,101 \le L_{uckGrade}<102:2.045+0.01\left|L_{uckGrade}-101\right|,102 \le L_{uckGrade}<116:2.055+0.009\left|L_{uckGrade}-102\right|,116 \le L_{uckGrade}<117:2.181+0.008\left|L_{uckGrade}-116\right|,117 \le L_{uckGrade}<121:2.189+0.009\left|L_{uckGrade}-117\right|,121 \le L_{uckGrade}<122:2.225+0.008\left|L_{uckGrade}-121\right|,122 \le L_{uckGrade}<124:2.233+0.009\left|L_{uckGrade}-122\right|,124 \le L_{uckGrade}<125:2.251+0.008\left|L_{uckGrade}-124\right|,125 \le L_{uckGrade}<126:2.259+0.009\left|L_{uckGrade}-125\right|,126 \le L_{uckGrade}<127:2.268+0.008\left|L_{uckGrade}-126\right|,127 \le L_{uckGrade}<129:2.276+0.009\left|L_{uckGrade}-127\right|,129 \le L_{uckGrade}<130:2.294+0.008\left|L_{uckGrade}-129\right|,130 \le L_{uckGrade}<131:2.302+0.009\left|L_{uckGrade}-130\right|,131 \le L_{uckGrade}<132:2.311+0.008\left|L_{uckGrade}-131\right|,132 \le L_{uckGrade}<133:2.319+0.009\left|L_{uckGrade}-132\right|,133 \le L_{uckGrade}<135:2.328+0.008\left|L_{uckGrade}-133\right|,135 \le L_{uckGrade}<136:2.344+0.009\left|L_{uckGrade}-135\right|,136 \le L_{uckGrade}<137:2.353+0.008\left|L_{uckGrade}-136\right|,137 \le L_{uckGrade}<138:2.361+0.009\left|L_{uckGrade}-137\right|,138 \le L_{uckGrade}<141:2.37+0.008\left|L_{uckGrade}-138\right|,141 \le L_{uckGrade}<142:2.394+0.009\left|L_{uckGrade}-141\right|,142 \le L_{uckGrade}<145:2.403+0.008\left|L_{uckGrade}-142\right|,145 \le L_{uckGrade}<146:2.427+0.009\left|L_{uckGrade}-145\right|,146 \le L_{uckGrade}<159:2.436+0.008\left|L_{uckGrade}-146\right|,159 \le L_{uckGrade}<160:2.54+0.007\left|L_{uckGrade}-159\right|,160 \le L_{uckGrade}<164:2.547+0.008\left|L_{uckGrade}-160\right|,164 \le L_{uckGrade}<165:2.579+0.007\left|L_{uckGrade}-164\right|,165 \le L_{uckGrade}<167:2.586+0.008\left|L_{uckGrade}-165\right|,167 \le L_{uckGrade}<168:2.602+0.007\left|L_{uckGrade}-167\right|,168 \le L_{uckGrade}<170:2.609+0.008\left|L_{uckGrade}-168\right|,170 \le L_{uckGrade}<171:2.625+0.007\left|L_{uckGrade}-170\right|,171 \le L_{uckGrade}<172:2.632+0.008\left|L_{uckGrade}-171\right|,172 \le L_{uckGrade}<173:2.64+0.007\left|L_{uckGrade}-172\right|,173 \le L_{uckGrade}<174:2.647+0.008\left|L_{uckGrade}-173\right|,174 \le L_{uckGrade}<175:2.655+0.007\left|L_{uckGrade}-174\right|,175 \le L_{uckGrade}<176:2.662+0.008\left|L_{uckGrade}-175\right|,176 \le L_{uckGrade}<177:2.67+0.007\left|L_{uckGrade}-176\right|,177 \le L_{uckGrade}<178:2.677+0.008\left|L_{uckGrade}-177\right|,178 \le L_{uckGrade}<180:2.685+0.007\left|L_{uckGrade}-178\right|,180 \le L_{uckGrade}<181:2.699+0.008\left|L_{uckGrade}-180\right|,181 \le L_{uckGrade}<183:2.707+0.007\left|L_{uckGrade}-181\right|,183 \le L_{uckGrade}<184:2.721+0.008\left|L_{uckGrade}-183\right|,184 \le L_{uckGrade}<186:2.729+0.007\left|L_{uckGrade}-184\right|,186 \le L_{uckGrade}<187:2.743+0.008\left|L_{uckGrade}-186\right|,187 \le L_{uckGrade}<205:2.751+0.007\left|L_{uckGrade}-187\right|,205 \le L_{uckGrade}<206:2.877+0.006\left|L_{uckGrade}-205\right|,206 \le L_{uckGrade}<209:2.883+0.007\left|L_{uckGrade}-206\right|,209 \le L_{uckGrade}<210:2.904+0.006\left|L_{uckGrade}-209\right|,210 \le L_{uckGrade}<212:2.91+0.007\left|L_{uckGrade}-210\right|,212 \le L_{uckGrade}<213:2.924+0.006\left|L_{uckGrade}-212\right|,213 \le L_{uckGrade}<214:2.93+0.007\left|L_{uckGrade}-213\right|,214 \le L_{uckGrade}<215:2.937+0.006\left|L_{uckGrade}-214\right|,215 \le L_{uckGrade}<216:2.943+0.007\left|L_{uckGrade}-215\right|,216 \le L_{uckGrade}<217:2.95+0.006\left|L_{uckGrade}-216\right|,217 \le L_{uckGrade}<218:2.956+0.007\left|L_{uckGrade}-217\right|,218 \le L_{uckGrade}<219:2.963+0.006\left|L_{uckGrade}-218\right|,219 \le L_{uckGrade}<220:2.969+0.007\left|L_{uckGrade}-219\right|,220 \le L_{uckGrade}<221:2.976+0.006\left|L_{uckGrade}-220\right|,221 \le L_{uckGrade}<222:2.982+0.007\left|L_{uckGrade}-221\right|,222 \le L_{uckGrade}<223:2.989+0.006\left|L_{uckGrade}-222\right|,223 \le L_{uckGrade}<224:2.995+0.007\left|L_{uckGrade}-223\right|,224 \le L_{uckGrade}<226:3.002+0.006\left|L_{uckGrade}-224\right|,226 \le L_{uckGrade}<227:3.014+0.007\left|L_{uckGrade}-226\right|,227 \le L_{uckGrade}<230:3.021+0.006\left|L_{uckGrade}-227\right|,230 \le L_{uckGrade}<231:3.039+0.007\left|L_{uckGrade}-230\right|,231 \le L_{uckGrade}<248:3.046+0.006\left|L_{uckGrade}-231\right|,248 \le L_{uckGrade}<249:3.148+0.005\left|L_{uckGrade}-248\right|,249 \le L_{uckGrade}<252:3.153+0.006\left|L_{uckGrade}-249\right|,252 \le L_{uckGrade}<253:3.171+0.005\left|L_{uckGrade}-252\right|,253 \le L_{uckGrade}<255:3.176+0.006\left|L_{uckGrade}-253\right|,255 \le L_{uckGrade}<256:3.188+0.005\left|L_{uckGrade}-255\right|,256 \le L_{uckGrade}<257:3.193+0.006\left|L_{uckGrade}-256\right|,257 \le L_{uckGrade}<258:3.199+0.005\left|L_{uckGrade}-257\right|,258 \le L_{uckGrade}<260:3.204+0.006\left|L_{uckGrade}-258\right|,260 \le L_{uckGrade}<261:3.216+0.005\left|L_{uckGrade}-260\right|,261 \le L_{uckGrade}<262:3.221+0.006\left|L_{uckGrade}-261\right|,262 \le L_{uckGrade}<263:3.227+0.005\left|L_{uckGrade}-262\right|,263 \le L_{uckGrade}<264:3.232+0.006\left|L_{uckGrade}-263\right|,264 \le L_{uckGrade}<266:3.238+0.005\left|L_{uckGrade}-264\right|,266 \le L_{uckGrade}<267:3.248+0.006\left|L_{uckGrade}-266\right|,267 \le L_{uckGrade}<269:3.254+0.005\left|L_{uckGrade}-267\right|,269 \le L_{uckGrade}<270:3.264+0.006\left|L_{uckGrade}-269\right|,270 \le L_{uckGrade}<272:3.27+0.005\left|L_{uckGrade}-270\right|,272 \le L_{uckGrade}<273:3.28+0.006\left|L_{uckGrade}-272\right|,273 \le L_{uckGrade}<278:3.286+0.005\left|L_{uckGrade}-273\right|,278 \le L_{uckGrade}<279:3.311+0.006\left|L_{uckGrade}-278\right|,279 \le L_{uckGrade}<287:3.317+0.005\left|L_{uckGrade}-279\right|,287 \le L_{uckGrade}<288:3.357+0.004\left|L_{uckGrade}-287\right|,288 \le L_{uckGrade}<293:3.361+0.005\left|L_{uckGrade}-288\right|,293 \le L_{uckGrade}<294:3.386+0.004\left|L_{uckGrade}-293\right|,294 \le L_{uckGrade}<297:3.39+0.005\left|L_{uckGrade}-294\right|,297 \le L_{uckGrade}<298:3.405+0.004\left|L_{uckGrade}-297\right|,298 \le L_{uckGrade}<299:3.409+0.005\left|L_{uckGrade}-298\right|,299 \le L_{uckGrade}<300:3.414+0.004\left|L_{uckGrade}-299\right|,300 \le L_{uckGrade}<302:3.418+0.005\left|L_{uckGrade}-300\right|,302 \le L_{uckGrade}<303:3.428+0.004\left|L_{uckGrade}-302\right|,303 \le L_{uckGrade}<304:3.432+0.005\left|L_{uckGrade}-303\right|,304 \le L_{uckGrade}<305:3.437+0.004\left|L_{uckGrade}-304\right|,305 \le L_{uckGrade}<306:3.441+0.005\left|L_{uckGrade}-305\right|,306 \le L_{uckGrade}<307:3.446+0.004\left|L_{uckGrade}-306\right|,307 \le L_{uckGrade}<308:3.45+0.005\left|L_{uckGrade}-307\right|,308 \le L_{uckGrade}<310:3.455+0.004\left|L_{uckGrade}-308\right|,310 \le L_{uckGrade}<311:3.463+0.005\left|L_{uckGrade}-310\right|,311 \le L_{uckGrade}<313:3.468+0.004\left|L_{uckGrade}-311\right|,313 \le L_{uckGrade}<314:3.476+0.005\left|L_{uckGrade}-313\right|,314 \le L_{uckGrade}<316:3.481+0.004\left|L_{uckGrade}-314\right|,316 \le L_{uckGrade}<317:3.489+0.005\left|L_{uckGrade}-316\right|,317 \le L_{uckGrade}<323:3.494+0.004\left|L_{uckGrade}-317\right|,323 \le L_{uckGrade}<324:3.518+0.005\left|L_{uckGrade}-323\right|,324 \le L_{uckGrade}<329:3.523+0.004\left|L_{uckGrade}-324\right|,329 \le L_{uckGrade}<330:3.543+0.003\left|L_{uckGrade}-329\right|,330 \le L_{uckGrade}<336:3.546+0.004\left|L_{uckGrade}-330\right|,336 \le L_{uckGrade}<337:3.57+0.003\left|L_{uckGrade}-336\right|,337 \le L_{uckGrade}<340:3.573+0.004\left|L_{uckGrade}-337\right|,340 \le L_{uckGrade}<341:3.585+0.003\left|L_{uckGrade}-340\right|,341 \le L_{uckGrade}<342:3.588+0.004\left|L_{uckGrade}-341\right|,342 \le L_{uckGrade}<343:3.592+0.003\left|L_{uckGrade}-342\right|,343 \le L_{uckGrade}<345:3.595+0.004\left|L_{uckGrade}-343\right|,345 \le L_{uckGrade}<346:3.603+0.003\left|L_{uckGrade}-345\right|,346 \le L_{uckGrade}<347:3.606+0.004\left|L_{uckGrade}-346\right|,347 \le L_{uckGrade}<348:3.61+0.003\left|L_{uckGrade}-347\right|,348 \le L_{uckGrade}<349:3.613+0.004\left|L_{uckGrade}-348\right|,349 \le L_{uckGrade}<350:3.617+0.003\left|L_{uckGrade}-349\right|,350 \le L_{uckGrade}<351:3.62+0.004\left|L_{uckGrade}-350\right|,351 \le L_{uckGrade}<352:3.624+0.003\left|L_{uckGrade}-351\right|,352 \le L_{uckGrade}<353:3.627+0.004\left|L_{uckGrade}-352\right|,353 \le L_{uckGrade}<355:3.631+0.003\left|L_{uckGrade}-353\right|,355 \le L_{uckGrade}<356:3.637+0.004\left|L_{uckGrade}-355\right|,356 \le L_{uckGrade}<359:3.641+0.003\left|L_{uckGrade}-356\right|,359 \le L_{uckGrade}<360:3.65+0.004\left|L_{uckGrade}-359\right|,360 \le L_{uckGrade}<364:3.654+0.003\left|L_{uckGrade}-360\right|,364 \le L_{uckGrade}<365:3.666+0.004\left|L_{uckGrade}-364\right|,365 \le L_{uckGrade}<376:3.67+0.003\left|L_{uckGrade}-365\right|,376 \le L_{uckGrade}<377:3.703+0.002\left|L_{uckGrade}-376\right|,377 \le L_{uckGrade}<381:3.705+0.003\left|L_{uckGrade}-377\right|,381 \le L_{uckGrade}<382:3.717+0.002\left|L_{uckGrade}-381\right|,382 \le L_{uckGrade}<384:3.719+0.003\left|L_{uckGrade}-382\right|,384 \le L_{uckGrade}<385:3.725+0.002\left|L_{uckGrade}-384\right|,385 \le L_{uckGrade}<387:3.727+0.003\left|L_{uckGrade}-385\right|,387 \le L_{uckGrade}<388:3.733+0.002\left|L_{uckGrade}-387\right|,388 \le L_{uckGrade}<389:3.735+0.003\left|L_{uckGrade}-388\right|,389 \le L_{uckGrade}<390:3.738+0.002\left|L_{uckGrade}-389\right|,390 \le L_{uckGrade}<391:3.74+0.003\left|L_{uckGrade}-390\right|,391 \le L_{uckGrade}<392:3.743+0.002\left|L_{uckGrade}-391\right|,392 \le L_{uckGrade}<393:3.745+0.003\left|L_{uckGrade}-392\right|,393 \le L_{uckGrade}<394:3.748+0.002\left|L_{uckGrade}-393\right|,394 \le L_{uckGrade}<395:3.75+0.003\left|L_{uckGrade}-394\right|,395 \le L_{uckGrade}<396:3.753+0.002\left|L_{uckGrade}-395\right|,396 \le L_{uckGrade}<397:3.755+0.003\left|L_{uckGrade}-396\right|,397 \le L_{uckGrade}<399:3.758+0.002\left|L_{uckGrade}-397\right|,399 \le L_{uckGrade}<400:3.762+0.003\left|L_{uckGrade}-399\right|,400 \le L_{uckGrade}<403:3.765+0.002\left|L_{uckGrade}-400\right|,403 \le L_{uckGrade}<404:3.771+0.003\left|L_{uckGrade}-403\right|,404 \le L_{uckGrade}<409:3.774+0.002\left|L_{uckGrade}-404\right|,409 \le L_{uckGrade}<410:3.784+0.003\left|L_{uckGrade}-409\right|,410 \le L_{uckGrade}<417:3.787+0.002\left|L_{uckGrade}-410\right|,417 \le L_{uckGrade}<418:3.801+0.001\left|L_{uckGrade}-417\right|,418 \le L_{uckGrade}<423:3.802+0.002\left|L_{uckGrade}-418\right|,423 \le L_{uckGrade}<424:3.812+0.001\left|L_{uckGrade}-423\right|,424 \le L_{uckGrade}<427:3.813+0.002\left|L_{uckGrade}-424\right|,427 \le L_{uckGrade}<428:3.819+0.001\left|L_{uckGrade}-427\right|,428 \le L_{uckGrade}<430:3.82+0.002\left|L_{uckGrade}-428\right|,430 \le L_{uckGrade}<431:3.824+0.001\left|L_{uckGrade}-430\right|,431 \le L_{uckGrade}<432:3.825+0.002\left|L_{uckGrade}-431\right|,432 \le L_{uckGrade}<433:3.827+0.001\left|L_{uckGrade}-432\right|,433 \le L_{uckGrade}<434:3.828+0.002\left|L_{uckGrade}-433\right|,434 \le L_{uckGrade}<435:3.83+0.001\left|L_{uckGrade}-434\right|,435 \le L_{uckGrade}<436:3.831+0.002\left|L_{uckGrade}-435\right|,436 \le L_{uckGrade}<437:3.833+0.001\left|L_{uckGrade}-436\right|,437 \le L_{uckGrade}<438:3.834+0.002\left|L_{uckGrade}-437\right|,438 \le L_{uckGrade}<439:3.836+0.001\left|L_{uckGrade}-438\right|,439 \le L_{uckGrade}<440:3.837+0.002\left|L_{uckGrade}-439\right|,440 \le L_{uckGrade}<442:3.839+0.001\left|L_{uckGrade}-440\right|,442 \le L_{uckGrade}<443:3.841+0.002\left|L_{uckGrade}-442\right|,443 \le L_{uckGrade}<445:3.843+0.001\left|L_{uckGrade}-443\right|,445 \le L_{uckGrade}<446:3.845+0.002\left|L_{uckGrade}-445\right|,446 \le L_{uckGrade}<450:3.847+0.001\left|L_{uckGrade}-446\right|,450 \le L_{uckGrade}<451:3.851+0.002\left|L_{uckGrade}-450\right|,451 \le L_{uckGrade}<463:3.853+0.001\left|L_{uckGrade}-451\right|,463 \le L_{uckGrade}<464:3.865+0\left|L_{uckGrade}-463\right|,464 \le L_{uckGrade}<468:3.865+0.001\left|L_{uckGrade}-464\right|,468 \le L_{uckGrade}<469:3.869+0\left|L_{uckGrade}-468\right|,469 \le L_{uckGrade}<471:3.869+0.001\left|L_{uckGrade}-469\right|,471 \le L_{uckGrade}<472:3.871+0\left|L_{uckGrade}-471\right|,472 \le L_{uckGrade}<474:3.871+0.001\left|L_{uckGrade}-472\right|,474 \le L_{uckGrade}<475:3.873+0\left|L_{uckGrade}-474\right|,475 \le L_{uckGrade}<476:3.873+0.001\left|L_{uckGrade}-475\right|,476 \le L_{uckGrade}<477:3.874+0\left|L_{uckGrade}-476\right|,477 \le L_{uckGrade}<478:3.874+0.001\left|L_{uckGrade}-477\right|,478 \le L_{uckGrade}<479:3.875+0\left|L_{uckGrade}-478\right|,479 \le L_{uckGrade}<480:3.875+0.001\left|L_{uckGrade}-479\right|,480 \le L_{uckGrade}<481:3.876+0\left|L_{uckGrade}-480\right|,481 \le L_{uckGrade}<482:3.876+0.001\left|L_{uckGrade}-481\right|,482 \le L_{uckGrade}<483:3.877+0\left|L_{uckGrade}-482\right|,483 \le L_{uckGrade}<484:3.877+0.001\left|L_{uckGrade}-483\right|,484 \le L_{uckGrade}<486:3.878+0\left|L_{uckGrade}-484\right|,486 \le L_{uckGrade}<487:3.878+0.001\left|L_{uckGrade}-486\right|,487 \le L_{uckGrade}<490:3.879+0\left|L_{uckGrade}-487\right|,490 \le L_{uckGrade}<491:3.879+0.001\left|L_{uckGrade}-490\right|,491 \le L_{uckGrade}<495:3.88+0\left|L_{uckGrade}-491\right|,495 \le L_{uckGrade}<496:3.88+0.001\left|L_{uckGrade}-495\right|,496 \le L_{uckGrade}<500:3.881+0\left|L_{uckGrade}-496\right|\right\}

See Example for how to use.


LaTeX Formula

Can be pasted into Desmos or other LaTeX editors for quick use of the equation.

Triple click to select all. Note: Some browsers will add an extra return carriage (line end) after the formula. Remove it before pasting for best results.

L_{uckGrade06}(L_{uckGrade})=\left\{0 \le L_{uckGrade}<6:1+0.013\left|L_{uckGrade}-0\right|,6 \le L_{uckGrade}<7:1.078+0.012\left|L_{uckGrade}-6\right|,7 \le L_{uckGrade}<11:1.09+0.013\left|L_{uckGrade}-7\right|,11 \le L_{uckGrade}<12:1.142+0.012\left|L_{uckGrade}-11\right|,12 \le L_{uckGrade}<14:1.154+0.013\left|L_{uckGrade}-12\right|,14 \le L_{uckGrade}<15:1.18+0.012\left|L_{uckGrade}-14\right|,15 \le L_{uckGrade}<16:1.192+0.013\left|L_{uckGrade}-15\right|,16 \le L_{uckGrade}<17:1.205+0.012\left|L_{uckGrade}-16\right|,17 \le L_{uckGrade}<19:1.217+0.013\left|L_{uckGrade}-17\right|,19 \le L_{uckGrade}<20:1.243+0.012\left|L_{uckGrade}-19\right|,20 \le L_{uckGrade}<21:1.255+0.013\left|L_{uckGrade}-20\right|,21 \le L_{uckGrade}<23:1.268+0.012\left|L_{uckGrade}-21\right|,23 \le L_{uckGrade}<24:1.292+0.013\left|L_{uckGrade}-23\right|,24 \le L_{uckGrade}<25:1.305+0.012\left|L_{uckGrade}-24\right|,25 \le L_{uckGrade}<26:1.317+0.013\left|L_{uckGrade}-25\right|,26 \le L_{uckGrade}<29:1.33+0.012\left|L_{uckGrade}-26\right|,29 \le L_{uckGrade}<30:1.366+0.013\left|L_{uckGrade}-29\right|,30 \le L_{uckGrade}<34:1.379+0.012\left|L_{uckGrade}-30\right|,34 \le L_{uckGrade}<35:1.427+0.013\left|L_{uckGrade}-34\right|,35 \le L_{uckGrade}<43:1.44+0.012\left|L_{uckGrade}-35\right|,43 \le L_{uckGrade}<44:1.536+0.011\left|L_{uckGrade}-43\right|,44 \le L_{uckGrade}<48:1.547+0.012\left|L_{uckGrade}-44\right|,48 \le L_{uckGrade}<49:1.595+0.011\left|L_{uckGrade}-48\right|,49 \le L_{uckGrade}<52:1.606+0.012\left|L_{uckGrade}-49\right|,52 \le L_{uckGrade}<53:1.642+0.011\left|L_{uckGrade}-52\right|,53 \le L_{uckGrade}<54:1.653+0.012\left|L_{uckGrade}-53\right|,54 \le L_{uckGrade}<55:1.665+0.011\left|L_{uckGrade}-54\right|,55 \le L_{uckGrade}<57:1.676+0.012\left|L_{uckGrade}-55\right|,57 \le L_{uckGrade}<58:1.7+0.011\left|L_{uckGrade}-57\right|,58 \le L_{uckGrade}<59:1.711+0.012\left|L_{uckGrade}-58\right|,59 \le L_{uckGrade}<61:1.723+0.011\left|L_{uckGrade}-59\right|,61 \le L_{uckGrade}<62:1.745+0.012\left|L_{uckGrade}-61\right|,62 \le L_{uckGrade}<63:1.757+0.011\left|L_{uckGrade}-62\right|,63 \le L_{uckGrade}<64:1.768+0.012\left|L_{uckGrade}-63\right|,64 \le L_{uckGrade}<66:1.78+0.011\left|L_{uckGrade}-64\right|,66 \le L_{uckGrade}<67:1.802+0.012\left|L_{uckGrade}-66\right|,67 \le L_{uckGrade}<71:1.814+0.011\left|L_{uckGrade}-67\right|,71 \le L_{uckGrade}<72:1.858+0.012\left|L_{uckGrade}-71\right|,72 \le L_{uckGrade}<83:1.87+0.011\left|L_{uckGrade}-72\right|,83 \le L_{uckGrade}<84:1.991+0.01\left|L_{uckGrade}-83\right|,84 \le L_{uckGrade}<87:2.001+0.011\left|L_{uckGrade}-84\right|,87 \le L_{uckGrade}<88:2.034+0.01\left|L_{uckGrade}-87\right|,88 \le L_{uckGrade}<91:2.044+0.011\left|L_{uckGrade}-88\right|,91 \le L_{uckGrade}<92:2.077+0.01\left|L_{uckGrade}-91\right|,92 \le L_{uckGrade}<93:2.087+0.011\left|L_{uckGrade}-92\right|,93 \le L_{uckGrade}<94:2.098+0.01\left|L_{uckGrade}-93\right|,94 \le L_{uckGrade}<95:2.108+0.011\left|L_{uckGrade}-94\right|,95 \le L_{uckGrade}<96:2.119+0.01\left|L_{uckGrade}-95\right|,96 \le L_{uckGrade}<97:2.129+0.011\left|L_{uckGrade}-96\right|,97 \le L_{uckGrade}<98:2.14+0.01\left|L_{uckGrade}-97\right|,98 \le L_{uckGrade}<99:2.15+0.011\left|L_{uckGrade}-98\right|,99 \le L_{uckGrade}<100:2.161+0.01\left|L_{uckGrade}-99\right|,100 \le L_{uckGrade}<101:2.171+0.011\left|L_{uckGrade}-100\right|,101 \le L_{uckGrade}<103:2.182+0.01\left|L_{uckGrade}-101\right|,103 \le L_{uckGrade}<104:2.202+0.011\left|L_{uckGrade}-103\right|,104 \le L_{uckGrade}<106:2.213+0.01\left|L_{uckGrade}-104\right|,106 \le L_{uckGrade}<107:2.233+0.011\left|L_{uckGrade}-106\right|,107 \le L_{uckGrade}<113:2.244+0.01\left|L_{uckGrade}-107\right|,113 \le L_{uckGrade}<114:2.304+0.011\left|L_{uckGrade}-113\right|,114 \le L_{uckGrade}<118:2.315+0.01\left|L_{uckGrade}-114\right|,118 \le L_{uckGrade}<119:2.355+0.009\left|L_{uckGrade}-118\right|,119 \le L_{uckGrade}<125:2.364+0.01\left|L_{uckGrade}-119\right|,125 \le L_{uckGrade}<126:2.424+0.009\left|L_{uckGrade}-125\right|,126 \le L_{uckGrade}<128:2.433+0.01\left|L_{uckGrade}-126\right|,128 \le L_{uckGrade}<129:2.453+0.009\left|L_{uckGrade}-128\right|,129 \le L_{uckGrade}<131:2.462+0.01\left|L_{uckGrade}-129\right|,131 \le L_{uckGrade}<132:2.482+0.009\left|L_{uckGrade}-131\right|,132 \le L_{uckGrade}<133:2.491+0.01\left|L_{uckGrade}-132\right|,133 \le L_{uckGrade}<134:2.501+0.009\left|L_{uckGrade}-133\right|,134 \le L_{uckGrade}<135:2.51+0.01\left|L_{uckGrade}-134\right|,135 \le L_{uckGrade}<136:2.52+0.009\left|L_{uckGrade}-135\right|,136 \le L_{uckGrade}<137:2.529+0.01\left|L_{uckGrade}-136\right|,137 \le L_{uckGrade}<138:2.539+0.009\left|L_{uckGrade}-137\right|,138 \le L_{uckGrade}<139:2.548+0.01\left|L_{uckGrade}-138\right|,139 \le L_{uckGrade}<141:2.558+0.009\left|L_{uckGrade}-139\right|,141 \le L_{uckGrade}<142:2.576+0.01\left|L_{uckGrade}-141\right|,142 \le L_{uckGrade}<144:2.586+0.009\left|L_{uckGrade}-142\right|,144 \le L_{uckGrade}<145:2.604+0.01\left|L_{uckGrade}-144\right|,145 \le L_{uckGrade}<150:2.614+0.009\left|L_{uckGrade}-145\right|,150 \le L_{uckGrade}<151:2.659+0.01\left|L_{uckGrade}-150\right|,151 \le L_{uckGrade}<158:2.669+0.009\left|L_{uckGrade}-151\right|,158 \le L_{uckGrade}<159:2.732+0.008\left|L_{uckGrade}-158\right|,159 \le L_{uckGrade}<163:2.74+0.009\left|L_{uckGrade}-159\right|,163 \le L_{uckGrade}<164:2.776+0.008\left|L_{uckGrade}-163\right|,164 \le L_{uckGrade}<167:2.784+0.009\left|L_{uckGrade}-164\right|,167 \le L_{uckGrade}<168:2.811+0.008\left|L_{uckGrade}-167\right|,168 \le L_{uckGrade}<170:2.819+0.009\left|L_{uckGrade}-168\right|,170 \le L_{uckGrade}<171:2.837+0.008\left|L_{uckGrade}-170\right|,171 \le L_{uckGrade}<172:2.845+0.009\left|L_{uckGrade}-171\right|,172 \le L_{uckGrade}<173:2.854+0.008\left|L_{uckGrade}-172\right|,173 \le L_{uckGrade}<174:2.862+0.009\left|L_{uckGrade}-173\right|,174 \le L_{uckGrade}<175:2.871+0.008\left|L_{uckGrade}-174\right|,175 \le L_{uckGrade}<176:2.879+0.009\left|L_{uckGrade}-175\right|,176 \le L_{uckGrade}<178:2.888+0.008\left|L_{uckGrade}-176\right|,178 \le L_{uckGrade}<179:2.904+0.009\left|L_{uckGrade}-178\right|,179 \le L_{uckGrade}<181:2.913+0.008\left|L_{uckGrade}-179\right|,181 \le L_{uckGrade}<182:2.929+0.009\left|L_{uckGrade}-181\right|,182 \le L_{uckGrade}<185:2.938+0.008\left|L_{uckGrade}-182\right|,185 \le L_{uckGrade}<186:2.962+0.009\left|L_{uckGrade}-185\right|,186 \le L_{uckGrade}<200:2.971+0.008\left|L_{uckGrade}-186\right|,200 \le L_{uckGrade}<201:3.083+0.007\left|L_{uckGrade}-200\right|,201 \le L_{uckGrade}<204:3.09+0.008\left|L_{uckGrade}-201\right|,204 \le L_{uckGrade}<205:3.114+0.007\left|L_{uckGrade}-204\right|,205 \le L_{uckGrade}<207:3.121+0.008\left|L_{uckGrade}-205\right|,207 \le L_{uckGrade}<208:3.137+0.007\left|L_{uckGrade}-207\right|,208 \le L_{uckGrade}<209:3.144+0.008\left|L_{uckGrade}-208\right|,209 \le L_{uckGrade}<210:3.152+0.007\left|L_{uckGrade}-209\right|,210 \le L_{uckGrade}<211:3.159+0.008\left|L_{uckGrade}-210\right|,211 \le L_{uckGrade}<212:3.167+0.007\left|L_{uckGrade}-211\right|,212 \le L_{uckGrade}<213:3.174+0.008\left|L_{uckGrade}-212\right|,213 \le L_{uckGrade}<214:3.182+0.007\left|L_{uckGrade}-213\right|,214 \le L_{uckGrade}<215:3.189+0.008\left|L_{uckGrade}-214\right|,215 \le L_{uckGrade}<216:3.197+0.007\left|L_{uckGrade}-215\right|,216 \le L_{uckGrade}<217:3.204+0.008\left|L_{uckGrade}-216\right|,217 \le L_{uckGrade}<219:3.212+0.007\left|L_{uckGrade}-217\right|,219 \le L_{uckGrade}<220:3.226+0.008\left|L_{uckGrade}-219\right|,220 \le L_{uckGrade}<223:3.234+0.007\left|L_{uckGrade}-220\right|,223 \le L_{uckGrade}<224:3.255+0.008\left|L_{uckGrade}-223\right|,224 \le L_{uckGrade}<239:3.263+0.007\left|L_{uckGrade}-224\right|,239 \le L_{uckGrade}<240:3.368+0.006\left|L_{uckGrade}-239\right|,240 \le L_{uckGrade}<243:3.374+0.007\left|L_{uckGrade}-240\right|,243 \le L_{uckGrade}<244:3.395+0.006\left|L_{uckGrade}-243\right|,244 \le L_{uckGrade}<245:3.401+0.007\left|L_{uckGrade}-244\right|,245 \le L_{uckGrade}<246:3.408+0.006\left|L_{uckGrade}-245\right|,246 \le L_{uckGrade}<248:3.414+0.007\left|L_{uckGrade}-246\right|,248 \le L_{uckGrade}<249:3.428+0.006\left|L_{uckGrade}-248\right|,249 \le L_{uckGrade}<250:3.434+0.007\left|L_{uckGrade}-249\right|,250 \le L_{uckGrade}<251:3.441+0.006\left|L_{uckGrade}-250\right|,251 \le L_{uckGrade}<252:3.447+0.007\left|L_{uckGrade}-251\right|,252 \le L_{uckGrade}<253:3.454+0.006\left|L_{uckGrade}-252\right|,253 \le L_{uckGrade}<254:3.46+0.007\left|L_{uckGrade}-253\right|,254 \le L_{uckGrade}<256:3.467+0.006\left|L_{uckGrade}-254\right|,256 \le L_{uckGrade}<257:3.479+0.007\left|L_{uckGrade}-256\right|,257 \le L_{uckGrade}<259:3.486+0.006\left|L_{uckGrade}-257\right|,259 \le L_{uckGrade}<260:3.498+0.007\left|L_{uckGrade}-259\right|,260 \le L_{uckGrade}<264:3.505+0.006\left|L_{uckGrade}-260\right|,264 \le L_{uckGrade}<265:3.529+0.007\left|L_{uckGrade}-264\right|,265 \le L_{uckGrade}<274:3.536+0.006\left|L_{uckGrade}-265\right|,274 \le L_{uckGrade}<275:3.59+0.005\left|L_{uckGrade}-274\right|,275 \le L_{uckGrade}<279:3.595+0.006\left|L_{uckGrade}-275\right|,279 \le L_{uckGrade}<280:3.619+0.005\left|L_{uckGrade}-279\right|,280 \le L_{uckGrade}<283:3.624+0.006\left|L_{uckGrade}-280\right|,283 \le L_{uckGrade}<284:3.642+0.005\left|L_{uckGrade}-283\right|,284 \le L_{uckGrade}<285:3.647+0.006\left|L_{uckGrade}-284\right|,285 \le L_{uckGrade}<286:3.653+0.005\left|L_{uckGrade}-285\right|,286 \le L_{uckGrade}<287:3.658+0.006\left|L_{uckGrade}-286\right|,287 \le L_{uckGrade}<288:3.664+0.005\left|L_{uckGrade}-287\right|,288 \le L_{uckGrade}<289:3.669+0.006\left|L_{uckGrade}-288\right|,289 \le L_{uckGrade}<290:3.675+0.005\left|L_{uckGrade}-289\right|,290 \le L_{uckGrade}<291:3.68+0.006\left|L_{uckGrade}-290\right|,291 \le L_{uckGrade}<292:3.686+0.005\left|L_{uckGrade}-291\right|,292 \le L_{uckGrade}<293:3.691+0.006\left|L_{uckGrade}-292\right|,293 \le L_{uckGrade}<294:3.697+0.005\left|L_{uckGrade}-293\right|,294 \le L_{uckGrade}<295:3.702+0.006\left|L_{uckGrade}-294\right|,295 \le L_{uckGrade}<298:3.708+0.005\left|L_{uckGrade}-295\right|,298 \le L_{uckGrade}<299:3.723+0.006\left|L_{uckGrade}-298\right|,299 \le L_{uckGrade}<303:3.729+0.005\left|L_{uckGrade}-299\right|,303 \le L_{uckGrade}<304:3.749+0.006\left|L_{uckGrade}-303\right|,304 \le L_{uckGrade}<312:3.755+0.005\left|L_{uckGrade}-304\right|,312 \le L_{uckGrade}<313:3.795+0.004\left|L_{uckGrade}-312\right|,313 \le L_{uckGrade}<318:3.799+0.005\left|L_{uckGrade}-313\right|,318 \le L_{uckGrade}<319:3.824+0.004\left|L_{uckGrade}-318\right|,319 \le L_{uckGrade}<321:3.828+0.005\left|L_{uckGrade}-319\right|,321 \le L_{uckGrade}<322:3.838+0.004\left|L_{uckGrade}-321\right|,322 \le L_{uckGrade}<324:3.842+0.005\left|L_{uckGrade}-322\right|,324 \le L_{uckGrade}<325:3.852+0.004\left|L_{uckGrade}-324\right|,325 \le L_{uckGrade}<326:3.856+0.005\left|L_{uckGrade}-325\right|,326 \le L_{uckGrade}<327:3.861+0.004\left|L_{uckGrade}-326\right|,327 \le L_{uckGrade}<328:3.865+0.005\left|L_{uckGrade}-327\right|,328 \le L_{uckGrade}<329:3.87+0.004\left|L_{uckGrade}-328\right|,329 \le L_{uckGrade}<330:3.874+0.005\left|L_{uckGrade}-329\right|,330 \le L_{uckGrade}<332:3.879+0.004\left|L_{uckGrade}-330\right|,332 \le L_{uckGrade}<333:3.887+0.005\left|L_{uckGrade}-332\right|,333 \le L_{uckGrade}<335:3.892+0.004\left|L_{uckGrade}-333\right|,335 \le L_{uckGrade}<336:3.9+0.005\left|L_{uckGrade}-335\right|,336 \le L_{uckGrade}<339:3.905+0.004\left|L_{uckGrade}-336\right|,339 \le L_{uckGrade}<340:3.917+0.005\left|L_{uckGrade}-339\right|,340 \le L_{uckGrade}<353:3.922+0.004\left|L_{uckGrade}-340\right|,353 \le L_{uckGrade}<354:3.974+0.003\left|L_{uckGrade}-353\right|,354 \le L_{uckGrade}<358:3.977+0.004\left|L_{uckGrade}-354\right|,358 \le L_{uckGrade}<359:3.993+0.003\left|L_{uckGrade}-358\right|,359 \le L_{uckGrade}<361:3.996+0.004\left|L_{uckGrade}-359\right|,361 \le L_{uckGrade}<362:4.004+0.003\left|L_{uckGrade}-361\right|,362 \le L_{uckGrade}<363:4.007+0.004\left|L_{uckGrade}-362\right|,363 \le L_{uckGrade}<364:4.011+0.003\left|L_{uckGrade}-363\right|,364 \le L_{uckGrade}<365:4.014+0.004\left|L_{uckGrade}-364\right|,365 \le L_{uckGrade}<366:4.018+0.003\left|L_{uckGrade}-365\right|,366 \le L_{uckGrade}<367:4.021+0.004\left|L_{uckGrade}-366\right|,367 \le L_{uckGrade}<368:4.025+0.003\left|L_{uckGrade}-367\right|,368 \le L_{uckGrade}<369:4.028+0.004\left|L_{uckGrade}-368\right|,369 \le L_{uckGrade}<371:4.032+0.003\left|L_{uckGrade}-369\right|,371 \le L_{uckGrade}<372:4.038+0.004\left|L_{uckGrade}-371\right|,372 \le L_{uckGrade}<374:4.042+0.003\left|L_{uckGrade}-372\right|,374 \le L_{uckGrade}<375:4.048+0.004\left|L_{uckGrade}-374\right|,375 \le L_{uckGrade}<378:4.052+0.003\left|L_{uckGrade}-375\right|,378 \le L_{uckGrade}<379:4.061+0.004\left|L_{uckGrade}-378\right|,379 \le L_{uckGrade}<391:4.065+0.003\left|L_{uckGrade}-379\right|,391 \le L_{uckGrade}<392:4.101+0.002\left|L_{uckGrade}-391\right|,392 \le L_{uckGrade}<396:4.103+0.003\left|L_{uckGrade}-392\right|,396 \le L_{uckGrade}<397:4.115+0.002\left|L_{uckGrade}-396\right|,397 \le L_{uckGrade}<399:4.117+0.003\left|L_{uckGrade}-397\right|,399 \le L_{uckGrade}<400:4.123+0.002\left|L_{uckGrade}-399\right|,400 \le L_{uckGrade}<401:4.125+0.003\left|L_{uckGrade}-400\right|,401 \le L_{uckGrade}<402:4.128+0.002\left|L_{uckGrade}-401\right|,402 \le L_{uckGrade}<403:4.13+0.003\left|L_{uckGrade}-402\right|,403 \le L_{uckGrade}<404:4.133+0.002\left|L_{uckGrade}-403\right|,404 \le L_{uckGrade}<405:4.135+0.003\left|L_{uckGrade}-404\right|,405 \le L_{uckGrade}<406:4.138+0.002\left|L_{uckGrade}-405\right|,406 \le L_{uckGrade}<407:4.14+0.003\left|L_{uckGrade}-406\right|,407 \le L_{uckGrade}<408:4.143+0.002\left|L_{uckGrade}-407\right|,408 \le L_{uckGrade}<409:4.145+0.003\left|L_{uckGrade}-408\right|,409 \le L_{uckGrade}<411:4.148+0.002\left|L_{uckGrade}-409\right|,411 \le L_{uckGrade}<412:4.152+0.003\left|L_{uckGrade}-411\right|,412 \le L_{uckGrade}<415:4.155+0.002\left|L_{uckGrade}-412\right|,415 \le L_{uckGrade}<416:4.161+0.003\left|L_{uckGrade}-415\right|,416 \le L_{uckGrade}<432:4.164+0.002\left|L_{uckGrade}-416\right|,432 \le L_{uckGrade}<433:4.196+0.001\left|L_{uckGrade}-432\right|,433 \le L_{uckGrade}<435:4.197+0.002\left|L_{uckGrade}-433\right|,435 \le L_{uckGrade}<436:4.201+0.001\left|L_{uckGrade}-435\right|,436 \le L_{uckGrade}<438:4.202+0.002\left|L_{uckGrade}-436\right|,438 \le L_{uckGrade}<439:4.206+0.001\left|L_{uckGrade}-438\right|,439 \le L_{uckGrade}<440:4.207+0.002\left|L_{uckGrade}-439\right|,440 \le L_{uckGrade}<441:4.209+0.001\left|L_{uckGrade}-440\right|,441 \le L_{uckGrade}<443:4.21+0.002\left|L_{uckGrade}-441\right|,443 \le L_{uckGrade}<445:4.214+0.001\left|L_{uckGrade}-443\right|,445 \le L_{uckGrade}<446:4.216+0.002\left|L_{uckGrade}-445\right|,446 \le L_{uckGrade}<447:4.218+0.001\left|L_{uckGrade}-446\right|,447 \le L_{uckGrade}<448:4.219+0.002\left|L_{uckGrade}-447\right|,448 \le L_{uckGrade}<450:4.221+0.001\left|L_{uckGrade}-448\right|,450 \le L_{uckGrade}<451:4.223+0.002\left|L_{uckGrade}-450\right|,451 \le L_{uckGrade}<454:4.225+0.001\left|L_{uckGrade}-451\right|,454 \le L_{uckGrade}<455:4.228+0.002\left|L_{uckGrade}-454\right|,455 \le L_{uckGrade}<469:4.23+0.001\left|L_{uckGrade}-455\right|,469 \le L_{uckGrade}<470:4.244+0\left|L_{uckGrade}-469\right|,470 \le L_{uckGrade}<473:4.244+0.001\left|L_{uckGrade}-470\right|,473 \le L_{uckGrade}<474:4.247+0\left|L_{uckGrade}-473\right|,474 \le L_{uckGrade}<476:4.247+0.001\left|L_{uckGrade}-474\right|,476 \le L_{uckGrade}<477:4.249+0\left|L_{uckGrade}-476\right|,477 \le L_{uckGrade}<478:4.249+0.001\left|L_{uckGrade}-477\right|,478 \le L_{uckGrade}<479:4.25+0\left|L_{uckGrade}-478\right|,479 \le L_{uckGrade}<481:4.25+0.001\left|L_{uckGrade}-479\right|,481 \le L_{uckGrade}<482:4.252+0\left|L_{uckGrade}-481\right|,482 \le L_{uckGrade}<483:4.252+0.001\left|L_{uckGrade}-482\right|,483 \le L_{uckGrade}<485:4.253+0\left|L_{uckGrade}-483\right|,485 \le L_{uckGrade}<486:4.253+0.001\left|L_{uckGrade}-485\right|,486 \le L_{uckGrade}<488:4.254+0\left|L_{uckGrade}-486\right|,488 \le L_{uckGrade}<489:4.254+0.001\left|L_{uckGrade}-488\right|,489 \le L_{uckGrade}<491:4.255+0\left|L_{uckGrade}-489\right|,491 \le L_{uckGrade}<492:4.255+0.001\left|L_{uckGrade}-491\right|,492 \le L_{uckGrade}<499:4.256+0\left|L_{uckGrade}-492\right|,499 \le L_{uckGrade}<500:4.256+0.001\left|L_{uckGrade}-499\right|\right\}

See Example for how to use.


LaTeX Formula

Can be pasted into Desmos or other LaTeX editors for quick use of the equation.

Triple click to select all. Note: Some browsers will add an extra return carriage (line end) after the formula. Remove it before pasting for best results.

L_{uckGrade07}(L_{uckGrade})=\left\{0 \le L_{uckGrade}<1:1+0.014\left|L_{uckGrade}-0\right|,1 \le L_{uckGrade}<3:1.014+0.013\left|L_{uckGrade}-1\right|,3 \le L_{uckGrade}<4:1.04+0.014\left|L_{uckGrade}-3\right|,4 \le L_{uckGrade}<5:1.054+0.013\left|L_{uckGrade}-4\right|,5 \le L_{uckGrade}<6:1.067+0.014\left|L_{uckGrade}-5\right|,6 \le L_{uckGrade}<8:1.081+0.013\left|L_{uckGrade}-6\right|,8 \le L_{uckGrade}<9:1.107+0.014\left|L_{uckGrade}-8\right|,9 \le L_{uckGrade}<13:1.121+0.013\left|L_{uckGrade}-9\right|,13 \le L_{uckGrade}<14:1.173+0.014\left|L_{uckGrade}-13\right|,14 \le L_{uckGrade}<24:1.187+0.013\left|L_{uckGrade}-14\right|,24 \le L_{uckGrade}<25:1.317+0.012\left|L_{uckGrade}-24\right|,25 \le L_{uckGrade}<29:1.329+0.013\left|L_{uckGrade}-25\right|,29 \le L_{uckGrade}<30:1.381+0.012\left|L_{uckGrade}-29\right|,30 \le L_{uckGrade}<32:1.393+0.013\left|L_{uckGrade}-30\right|,32 \le L_{uckGrade}<33:1.419+0.012\left|L_{uckGrade}-32\right|,33 \le L_{uckGrade}<34:1.431+0.013\left|L_{uckGrade}-33\right|,34 \le L_{uckGrade}<35:1.444+0.012\left|L_{uckGrade}-34\right|,35 \le L_{uckGrade}<37:1.456+0.013\left|L_{uckGrade}-35\right|,37 \le L_{uckGrade}<39:1.482+0.012\left|L_{uckGrade}-37\right|,39 \le L_{uckGrade}<40:1.506+0.013\left|L_{uckGrade}-39\right|,40 \le L_{uckGrade}<41:1.519+0.012\left|L_{uckGrade}-40\right|,41 \le L_{uckGrade}<42:1.531+0.013\left|L_{uckGrade}-41\right|,42 \le L_{uckGrade}<44:1.544+0.012\left|L_{uckGrade}-42\right|,44 \le L_{uckGrade}<45:1.568+0.013\left|L_{uckGrade}-44\right|,45 \le L_{uckGrade}<47:1.581+0.012\left|L_{uckGrade}-45\right|,47 \le L_{uckGrade}<48:1.605+0.013\left|L_{uckGrade}-47\right|,48 \le L_{uckGrade}<64:1.618+0.012\left|L_{uckGrade}-48\right|,64 \le L_{uckGrade}<65:1.81+0.011\left|L_{uckGrade}-64\right|,65 \le L_{uckGrade}<67:1.821+0.012\left|L_{uckGrade}-65\right|,67 \le L_{uckGrade}<68:1.845+0.011\left|L_{uckGrade}-67\right|,68 \le L_{uckGrade}<70:1.856+0.012\left|L_{uckGrade}-68\right|,70 \le L_{uckGrade}<71:1.88+0.011\left|L_{uckGrade}-70\right|,71 \le L_{uckGrade}<73:1.891+0.012\left|L_{uckGrade}-71\right|,73 \le L_{uckGrade}<74:1.915+0.011\left|L_{uckGrade}-73\right|,74 \le L_{uckGrade}<75:1.926+0.012\left|L_{uckGrade}-74\right|,75 \le L_{uckGrade}<77:1.938+0.011\left|L_{uckGrade}-75\right|,77 \le L_{uckGrade}<78:1.96+0.012\left|L_{uckGrade}-77\right|,78 \le L_{uckGrade}<79:1.972+0.011\left|L_{uckGrade}-78\right|,79 \le L_{uckGrade}<80:1.983+0.012\left|L_{uckGrade}-79\right|,80 \le L_{uckGrade}<82:1.995+0.011\left|L_{uckGrade}-80\right|,82 \le L_{uckGrade}<83:2.017+0.012\left|L_{uckGrade}-82\right|,83 \le L_{uckGrade}<87:2.029+0.011\left|L_{uckGrade}-83\right|,87 \le L_{uckGrade}<88:2.073+0.012\left|L_{uckGrade}-87\right|,88 \le L_{uckGrade}<99:2.085+0.011\left|L_{uckGrade}-88\right|,99 \le L_{uckGrade}<100:2.206+0.01\left|L_{uckGrade}-99\right|,100 \le L_{uckGrade}<103:2.216+0.011\left|L_{uckGrade}-100\right|,103 \le L_{uckGrade}<104:2.249+0.01\left|L_{uckGrade}-103\right|,104 \le L_{uckGrade}<106:2.259+0.011\left|L_{uckGrade}-104\right|,106 \le L_{uckGrade}<107:2.281+0.01\left|L_{uckGrade}-106\right|,107 \le L_{uckGrade}<109:2.291+0.011\left|L_{uckGrade}-107\right|,109 \le L_{uckGrade}<110:2.313+0.01\left|L_{uckGrade}-109\right|,110 \le L_{uckGrade}<111:2.323+0.011\left|L_{uckGrade}-110\right|,111 \le L_{uckGrade}<112:2.334+0.01\left|L_{uckGrade}-111\right|,112 \le L_{uckGrade}<113:2.344+0.011\left|L_{uckGrade}-112\right|,113 \le L_{uckGrade}<114:2.355+0.01\left|L_{uckGrade}-113\right|,114 \le L_{uckGrade}<115:2.365+0.011\left|L_{uckGrade}-114\right|,115 \le L_{uckGrade}<117:2.376+0.01\left|L_{uckGrade}-115\right|,117 \le L_{uckGrade}<118:2.396+0.011\left|L_{uckGrade}-117\right|,118 \le L_{uckGrade}<121:2.407+0.01\left|L_{uckGrade}-118\right|,121 \le L_{uckGrade}<122:2.437+0.011\left|L_{uckGrade}-121\right|,122 \le L_{uckGrade}<127:2.448+0.01\left|L_{uckGrade}-122\right|,127 \le L_{uckGrade}<128:2.498+0.011\left|L_{uckGrade}-127\right|,128 \le L_{uckGrade}<132:2.509+0.01\left|L_{uckGrade}-128\right|,132 \le L_{uckGrade}<133:2.549+0.009\left|L_{uckGrade}-132\right|,133 \le L_{uckGrade}<139:2.558+0.01\left|L_{uckGrade}-133\right|,139 \le L_{uckGrade}<140:2.618+0.009\left|L_{uckGrade}-139\right|,140 \le L_{uckGrade}<142:2.627+0.01\left|L_{uckGrade}-140\right|,142 \le L_{uckGrade}<143:2.647+0.009\left|L_{uckGrade}-142\right|,143 \le L_{uckGrade}<145:2.656+0.01\left|L_{uckGrade}-143\right|,145 \le L_{uckGrade}<146:2.676+0.009\left|L_{uckGrade}-145\right|,146 \le L_{uckGrade}<147:2.685+0.01\left|L_{uckGrade}-146\right|,147 \le L_{uckGrade}<148:2.695+0.009\left|L_{uckGrade}-147\right|,148 \le L_{uckGrade}<149:2.704+0.01\left|L_{uckGrade}-148\right|,149 \le L_{uckGrade}<150:2.714+0.009\left|L_{uckGrade}-149\right|,150 \le L_{uckGrade}<151:2.723+0.01\left|L_{uckGrade}-150\right|,151 \le L_{uckGrade}<152:2.733+0.009\left|L_{uckGrade}-151\right|,152 \le L_{uckGrade}<153:2.742+0.01\left|L_{uckGrade}-152\right|,153 \le L_{uckGrade}<155:2.752+0.009\left|L_{uckGrade}-153\right|,155 \le L_{uckGrade}<156:2.77+0.01\left|L_{uckGrade}-155\right|,156 \le L_{uckGrade}<159:2.78+0.009\left|L_{uckGrade}-156\right|,159 \le L_{uckGrade}<160:2.807+0.01\left|L_{uckGrade}-159\right|,160 \le L_{uckGrade}<174:2.817+0.009\left|L_{uckGrade}-160\right|,174 \le L_{uckGrade}<175:2.943+0.008\left|L_{uckGrade}-174\right|,175 \le L_{uckGrade}<178:2.951+0.009\left|L_{uckGrade}-175\right|,178 \le L_{uckGrade}<179:2.978+0.008\left|L_{uckGrade}-178\right|,179 \le L_{uckGrade}<181:2.986+0.009\left|L_{uckGrade}-179\right|,181 \le L_{uckGrade}<182:3.004+0.008\left|L_{uckGrade}-181\right|,182 \le L_{uckGrade}<183:3.012+0.009\left|L_{uckGrade}-182\right|,183 \le L_{uckGrade}<184:3.021+0.008\left|L_{uckGrade}-183\right|,184 \le L_{uckGrade}<185:3.029+0.009\left|L_{uckGrade}-184\right|,185 \le L_{uckGrade}<186:3.038+0.008\left|L_{uckGrade}-185\right|,186 \le L_{uckGrade}<187:3.046+0.009\left|L_{uckGrade}-186\right|,187 \le L_{uckGrade}<188:3.055+0.008\left|L_{uckGrade}-187\right|,188 \le L_{uckGrade}<189:3.063+0.009\left|L_{uckGrade}-188\right|,189 \le L_{uckGrade}<190:3.072+0.008\left|L_{uckGrade}-189\right|,190 \le L_{uckGrade}<191:3.08+0.009\left|L_{uckGrade}-190\right|,191 \le L_{uckGrade}<193:3.089+0.008\left|L_{uckGrade}-191\right|,193 \le L_{uckGrade}<194:3.105+0.009\left|L_{uckGrade}-193\right|,194 \le L_{uckGrade}<198:3.114+0.008\left|L_{uckGrade}-194\right|,198 \le L_{uckGrade}<199:3.146+0.009\left|L_{uckGrade}-198\right|,199 \le L_{uckGrade}<209:3.155+0.008\left|L_{uckGrade}-199\right|,209 \le L_{uckGrade}<210:3.235+0.007\left|L_{uckGrade}-209\right|,210 \le L_{uckGrade}<214:3.242+0.008\left|L_{uckGrade}-210\right|,214 \le L_{uckGrade}<215:3.274+0.007\left|L_{uckGrade}-214\right|,215 \le L_{uckGrade}<217:3.281+0.008\left|L_{uckGrade}-215\right|,217 \le L_{uckGrade}<218:3.297+0.007\left|L_{uckGrade}-217\right|,218 \le L_{uckGrade}<220:3.304+0.008\left|L_{uckGrade}-218\right|,220 \le L_{uckGrade}<221:3.32+0.007\left|L_{uckGrade}-220\right|,221 \le L_{uckGrade}<222:3.327+0.008\left|L_{uckGrade}-221\right|,222 \le L_{uckGrade}<223:3.335+0.007\left|L_{uckGrade}-222\right|,223 \le L_{uckGrade}<224:3.342+0.008\left|L_{uckGrade}-223\right|,224 \le L_{uckGrade}<225:3.35+0.007\left|L_{uckGrade}-224\right|,225 \le L_{uckGrade}<226:3.357+0.008\left|L_{uckGrade}-225\right|,226 \le L_{uckGrade}<228:3.365+0.007\left|L_{uckGrade}-226\right|,228 \le L_{uckGrade}<229:3.379+0.008\left|L_{uckGrade}-228\right|,229 \le L_{uckGrade}<231:3.387+0.007\left|L_{uckGrade}-229\right|,231 \le L_{uckGrade}<232:3.401+0.008\left|L_{uckGrade}-231\right|,232 \le L_{uckGrade}<237:3.409+0.007\left|L_{uckGrade}-232\right|,237 \le L_{uckGrade}<238:3.444+0.008\left|L_{uckGrade}-237\right|,238 \le L_{uckGrade}<244:3.452+0.007\left|L_{uckGrade}-238\right|,244 \le L_{uckGrade}<245:3.494+0.006\left|L_{uckGrade}-244\right|,245 \le L_{uckGrade}<250:3.5+0.007\left|L_{uckGrade}-245\right|,250 \le L_{uckGrade}<251:3.535+0.006\left|L_{uckGrade}-250\right|,251 \le L_{uckGrade}<253:3.541+0.007\left|L_{uckGrade}-251\right|,253 \le L_{uckGrade}<254:3.555+0.006\left|L_{uckGrade}-253\right|,254 \le L_{uckGrade}<256:3.561+0.007\left|L_{uckGrade}-254\right|,256 \le L_{uckGrade}<257:3.575+0.006\left|L_{uckGrade}-256\right|,257 \le L_{uckGrade}<258:3.581+0.007\left|L_{uckGrade}-257\right|,258 \le L_{uckGrade}<259:3.588+0.006\left|L_{uckGrade}-258\right|,259 \le L_{uckGrade}<260:3.594+0.007\left|L_{uckGrade}-259\right|,260 \le L_{uckGrade}<261:3.601+0.006\left|L_{uckGrade}-260\right|,261 \le L_{uckGrade}<262:3.607+0.007\left|L_{uckGrade}-261\right|,262 \le L_{uckGrade}<263:3.614+0.006\left|L_{uckGrade}-262\right|,263 \le L_{uckGrade}<264:3.62+0.007\left|L_{uckGrade}-263\right|,264 \le L_{uckGrade}<266:3.627+0.006\left|L_{uckGrade}-264\right|,266 \le L_{uckGrade}<267:3.639+0.007\left|L_{uckGrade}-266\right|,267 \le L_{uckGrade}<270:3.646+0.006\left|L_{uckGrade}-267\right|,270 \le L_{uckGrade}<271:3.664+0.007\left|L_{uckGrade}-270\right|,271 \le L_{uckGrade}<286:3.671+0.006\left|L_{uckGrade}-271\right|,286 \le L_{uckGrade}<287:3.761+0.005\left|L_{uckGrade}-286\right|,287 \le L_{uckGrade}<290:3.766+0.006\left|L_{uckGrade}-287\right|,290 \le L_{uckGrade}<291:3.784+0.005\left|L_{uckGrade}-290\right|,291 \le L_{uckGrade}<292:3.789+0.006\left|L_{uckGrade}-291\right|,292 \le L_{uckGrade}<293:3.795+0.005\left|L_{uckGrade}-292\right|,293 \le L_{uckGrade}<295:3.8+0.006\left|L_{uckGrade}-293\right|,295 \le L_{uckGrade}<296:3.812+0.005\left|L_{uckGrade}-295\right|,296 \le L_{uckGrade}<297:3.817+0.006\left|L_{uckGrade}-296\right|,297 \le L_{uckGrade}<298:3.823+0.005\left|L_{uckGrade}-297\right|,298 \le L_{uckGrade}<299:3.828+0.006\left|L_{uckGrade}-298\right|,299 \le L_{uckGrade}<301:3.834+0.005\left|L_{uckGrade}-299\right|,301 \le L_{uckGrade}<302:3.844+0.006\left|L_{uckGrade}-301\right|,302 \le L_{uckGrade}<304:3.85+0.005\left|L_{uckGrade}-302\right|,304 \le L_{uckGrade}<305:3.86+0.006\left|L_{uckGrade}-304\right|,305 \le L_{uckGrade}<308:3.866+0.005\left|L_{uckGrade}-305\right|,308 \le L_{uckGrade}<309:3.881+0.006\left|L_{uckGrade}-308\right|,309 \le L_{uckGrade}<322:3.887+0.005\left|L_{uckGrade}-309\right|,322 \le L_{uckGrade}<323:3.952+0.004\left|L_{uckGrade}-322\right|,323 \le L_{uckGrade}<326:3.956+0.005\left|L_{uckGrade}-323\right|,326 \le L_{uckGrade}<327:3.971+0.004\left|L_{uckGrade}-326\right|,327 \le L_{uckGrade}<329:3.975+0.005\left|L_{uckGrade}-327\right|,329 \le L_{uckGrade}<330:3.985+0.004\left|L_{uckGrade}-329\right|,330 \le L_{uckGrade}<331:3.989+0.005\left|L_{uckGrade}-330\right|,331 \le L_{uckGrade}<332:3.994+0.004\left|L_{uckGrade}-331\right|,332 \le L_{uckGrade}<334:3.998+0.005\left|L_{uckGrade}-332\right|,334 \le L_{uckGrade}<336:4.008+0.004\left|L_{uckGrade}-334\right|,336 \le L_{uckGrade}<337:4.016+0.005\left|L_{uckGrade}-336\right|,337 \le L_{uckGrade}<338:4.021+0.004\left|L_{uckGrade}-337\right|,338 \le L_{uckGrade}<339:4.025+0.005\left|L_{uckGrade}-338\right|,339 \le L_{uckGrade}<341:4.03+0.004\left|L_{uckGrade}-339\right|,341 \le L_{uckGrade}<342:4.038+0.005\left|L_{uckGrade}-341\right|,342 \le L_{uckGrade}<345:4.043+0.004\left|L_{uckGrade}-342\right|,345 \le L_{uckGrade}<346:4.055+0.005\left|L_{uckGrade}-345\right|,346 \le L_{uckGrade}<358:4.06+0.004\left|L_{uckGrade}-346\right|,358 \le L_{uckGrade}<359:4.108+0.003\left|L_{uckGrade}-358\right|,359 \le L_{uckGrade}<363:4.111+0.004\left|L_{uckGrade}-359\right|,363 \le L_{uckGrade}<364:4.127+0.003\left|L_{uckGrade}-363\right|,364 \le L_{uckGrade}<366:4.13+0.004\left|L_{uckGrade}-364\right|,366 \le L_{uckGrade}<367:4.138+0.003\left|L_{uckGrade}-366\right|,367 \le L_{uckGrade}<368:4.141+0.004\left|L_{uckGrade}-367\right|,368 \le L_{uckGrade}<369:4.145+0.003\left|L_{uckGrade}-368\right|,369 \le L_{uckGrade}<370:4.148+0.004\left|L_{uckGrade}-369\right|,370 \le L_{uckGrade}<371:4.152+0.003\left|L_{uckGrade}-370\right|,371 \le L_{uckGrade}<372:4.155+0.004\left|L_{uckGrade}-371\right|,372 \le L_{uckGrade}<373:4.159+0.003\left|L_{uckGrade}-372\right|,373 \le L_{uckGrade}<374:4.162+0.004\left|L_{uckGrade}-373\right|,374 \le L_{uckGrade}<375:4.166+0.003\left|L_{uckGrade}-374\right|,375 \le L_{uckGrade}<376:4.169+0.004\left|L_{uckGrade}-375\right|,376 \le L_{uckGrade}<379:4.173+0.003\left|L_{uckGrade}-376\right|,379 \le L_{uckGrade}<380:4.182+0.004\left|L_{uckGrade}-379\right|,380 \le L_{uckGrade}<383:4.186+0.003\left|L_{uckGrade}-380\right|,383 \le L_{uckGrade}<384:4.195+0.004\left|L_{uckGrade}-383\right|,384 \le L_{uckGrade}<394:4.199+0.003\left|L_{uckGrade}-384\right|,394 \le L_{uckGrade}<395:4.229+0.002\left|L_{uckGrade}-394\right|,395 \le L_{uckGrade}<399:4.231+0.003\left|L_{uckGrade}-395\right|,399 \le L_{uckGrade}<400:4.243+0.002\left|L_{uckGrade}-399\right|,400 \le L_{uckGrade}<402:4.245+0.003\left|L_{uckGrade}-400\right|,402 \le L_{uckGrade}<403:4.251+0.002\left|L_{uckGrade}-402\right|,403 \le L_{uckGrade}<405:4.253+0.003\left|L_{uckGrade}-403\right|,405 \le L_{uckGrade}<406:4.259+0.002\left|L_{uckGrade}-405\right|,406 \le L_{uckGrade}<407:4.261+0.003\left|L_{uckGrade}-406\right|,407 \le L_{uckGrade}<408:4.264+0.002\left|L_{uckGrade}-407\right|,408 \le L_{uckGrade}<409:4.266+0.003\left|L_{uckGrade}-408\right|,409 \le L_{uckGrade}<410:4.269+0.002\left|L_{uckGrade}-409\right|,410 \le L_{uckGrade}<411:4.271+0.003\left|L_{uckGrade}-410\right|,411 \le L_{uckGrade}<413:4.274+0.002\left|L_{uckGrade}-411\right|,413 \le L_{uckGrade}<414:4.278+0.003\left|L_{uckGrade}-413\right|,414 \le L_{uckGrade}<416:4.281+0.002\left|L_{uckGrade}-414\right|,416 \le L_{uckGrade}<417:4.285+0.003\left|L_{uckGrade}-416\right|,417 \le L_{uckGrade}<421:4.288+0.002\left|L_{uckGrade}-417\right|,421 \le L_{uckGrade}<422:4.296+0.003\left|L_{uckGrade}-421\right|,422 \le L_{uckGrade}<431:4.299+0.002\left|L_{uckGrade}-422\right|,431 \le L_{uckGrade}<432:4.317+0.001\left|L_{uckGrade}-431\right|,432 \le L_{uckGrade}<436:4.318+0.002\left|L_{uckGrade}-432\right|,436 \le L_{uckGrade}<437:4.326+0.001\left|L_{uckGrade}-436\right|,437 \le L_{uckGrade}<439:4.327+0.002\left|L_{uckGrade}-437\right|,439 \le L_{uckGrade}<440:4.331+0.001\left|L_{uckGrade}-439\right|,440 \le L_{uckGrade}<442:4.332+0.002\left|L_{uckGrade}-440\right|,442 \le L_{uckGrade}<443:4.336+0.001\left|L_{uckGrade}-442\right|,443 \le L_{uckGrade}<444:4.337+0.002\left|L_{uckGrade}-443\right|,444 \le L_{uckGrade}<445:4.339+0.001\left|L_{uckGrade}-444\right|,445 \le L_{uckGrade}<446:4.34+0.002\left|L_{uckGrade}-445\right|,446 \le L_{uckGrade}<447:4.342+0.001\left|L_{uckGrade}-446\right|,447 \le L_{uckGrade}<448:4.343+0.002\left|L_{uckGrade}-447\right|,448 \le L_{uckGrade}<450:4.345+0.001\left|L_{uckGrade}-448\right|,450 \le L_{uckGrade}<451:4.347+0.002\left|L_{uckGrade}-450\right|,451 \le L_{uckGrade}<453:4.349+0.001\left|L_{uckGrade}-451\right|,453 \le L_{uckGrade}<454:4.351+0.002\left|L_{uckGrade}-453\right|,454 \le L_{uckGrade}<458:4.353+0.001\left|L_{uckGrade}-454\right|,458 \le L_{uckGrade}<459:4.357+0.002\left|L_{uckGrade}-458\right|,459 \le L_{uckGrade}<467:4.359+0.001\left|L_{uckGrade}-459\right|,467 \le L_{uckGrade}<468:4.367+0\left|L_{uckGrade}-467\right|,468 \le L_{uckGrade}<473:4.367+0.001\left|L_{uckGrade}-468\right|,473 \le L_{uckGrade}<474:4.372+0\left|L_{uckGrade}-473\right|,474 \le L_{uckGrade}<476:4.372+0.001\left|L_{uckGrade}-474\right|,476 \le L_{uckGrade}<477:4.374+0\left|L_{uckGrade}-476\right|,477 \le L_{uckGrade}<479:4.374+0.001\left|L_{uckGrade}-477\right|,479 \le L_{uckGrade}<480:4.376+0\left|L_{uckGrade}-479\right|,480 \le L_{uckGrade}<481:4.376+0.001\left|L_{uckGrade}-480\right|,481 \le L_{uckGrade}<482:4.377+0\left|L_{uckGrade}-481\right|,482 \le L_{uckGrade}<483:4.377+0.001\left|L_{uckGrade}-482\right|,483 \le L_{uckGrade}<484:4.378+0\left|L_{uckGrade}-483\right|,484 \le L_{uckGrade}<485:4.378+0.001\left|L_{uckGrade}-484\right|,485 \le L_{uckGrade}<487:4.379+0\left|L_{uckGrade}-485\right|,487 \le L_{uckGrade}<488:4.379+0.001\left|L_{uckGrade}-487\right|,488 \le L_{uckGrade}<490:4.38+0\left|L_{uckGrade}-488\right|,490 \le L_{uckGrade}<491:4.38+0.001\left|L_{uckGrade}-490\right|,491 \le L_{uckGrade}<496:4.381+0\left|L_{uckGrade}-491\right|,496 \le L_{uckGrade}<497:4.381+0.001\left|L_{uckGrade}-496\right|,497 \le L_{uckGrade}<500:4.382+0\left|L_{uckGrade}-497\right|\right\}

See Example for how to use.


LaTeX Formula

Can be pasted into Desmos or other LaTeX editors for quick use of the equation.

Triple click to select all. Note: Some browsers will add an extra return carriage (line end) after the formula. Remove it before pasting for best results.

L_{uckGrade08}(L_{uckGrade})=\left\{0 \le L_{uckGrade}<1:1+0.014\left|L_{uckGrade}-0\right|,1 \le L_{uckGrade}<3:1.014+0.013\left|L_{uckGrade}-1\right|,3 \le L_{uckGrade}<4:1.04+0.014\left|L_{uckGrade}-3\right|,4 \le L_{uckGrade}<5:1.054+0.013\left|L_{uckGrade}-4\right|,5 \le L_{uckGrade}<6:1.067+0.014\left|L_{uckGrade}-5\right|,6 \le L_{uckGrade}<8:1.081+0.013\left|L_{uckGrade}-6\right|,8 \le L_{uckGrade}<9:1.107+0.014\left|L_{uckGrade}-8\right|,9 \le L_{uckGrade}<13:1.121+0.013\left|L_{uckGrade}-9\right|,13 \le L_{uckGrade}<14:1.173+0.014\left|L_{uckGrade}-13\right|,14 \le L_{uckGrade}<24:1.187+0.013\left|L_{uckGrade}-14\right|,24 \le L_{uckGrade}<25:1.317+0.012\left|L_{uckGrade}-24\right|,25 \le L_{uckGrade}<29:1.329+0.013\left|L_{uckGrade}-25\right|,29 \le L_{uckGrade}<30:1.381+0.012\left|L_{uckGrade}-29\right|,30 \le L_{uckGrade}<32:1.393+0.013\left|L_{uckGrade}-30\right|,32 \le L_{uckGrade}<33:1.419+0.012\left|L_{uckGrade}-32\right|,33 \le L_{uckGrade}<34:1.431+0.013\left|L_{uckGrade}-33\right|,34 \le L_{uckGrade}<35:1.444+0.012\left|L_{uckGrade}-34\right|,35 \le L_{uckGrade}<37:1.456+0.013\left|L_{uckGrade}-35\right|,37 \le L_{uckGrade}<39:1.482+0.012\left|L_{uckGrade}-37\right|,39 \le L_{uckGrade}<40:1.506+0.013\left|L_{uckGrade}-39\right|,40 \le L_{uckGrade}<41:1.519+0.012\left|L_{uckGrade}-40\right|,41 \le L_{uckGrade}<42:1.531+0.013\left|L_{uckGrade}-41\right|,42 \le L_{uckGrade}<44:1.544+0.012\left|L_{uckGrade}-42\right|,44 \le L_{uckGrade}<45:1.568+0.013\left|L_{uckGrade}-44\right|,45 \le L_{uckGrade}<47:1.581+0.012\left|L_{uckGrade}-45\right|,47 \le L_{uckGrade}<48:1.605+0.013\left|L_{uckGrade}-47\right|,48 \le L_{uckGrade}<64:1.618+0.012\left|L_{uckGrade}-48\right|,64 \le L_{uckGrade}<65:1.81+0.011\left|L_{uckGrade}-64\right|,65 \le L_{uckGrade}<67:1.821+0.012\left|L_{uckGrade}-65\right|,67 \le L_{uckGrade}<68:1.845+0.011\left|L_{uckGrade}-67\right|,68 \le L_{uckGrade}<70:1.856+0.012\left|L_{uckGrade}-68\right|,70 \le L_{uckGrade}<71:1.88+0.011\left|L_{uckGrade}-70\right|,71 \le L_{uckGrade}<73:1.891+0.012\left|L_{uckGrade}-71\right|,73 \le L_{uckGrade}<74:1.915+0.011\left|L_{uckGrade}-73\right|,74 \le L_{uckGrade}<75:1.926+0.012\left|L_{uckGrade}-74\right|,75 \le L_{uckGrade}<77:1.938+0.011\left|L_{uckGrade}-75\right|,77 \le L_{uckGrade}<78:1.96+0.012\left|L_{uckGrade}-77\right|,78 \le L_{uckGrade}<79:1.972+0.011\left|L_{uckGrade}-78\right|,79 \le L_{uckGrade}<80:1.983+0.012\left|L_{uckGrade}-79\right|,80 \le L_{uckGrade}<82:1.995+0.011\left|L_{uckGrade}-80\right|,82 \le L_{uckGrade}<83:2.017+0.012\left|L_{uckGrade}-82\right|,83 \le L_{uckGrade}<87:2.029+0.011\left|L_{uckGrade}-83\right|,87 \le L_{uckGrade}<88:2.073+0.012\left|L_{uckGrade}-87\right|,88 \le L_{uckGrade}<99:2.085+0.011\left|L_{uckGrade}-88\right|,99 \le L_{uckGrade}<100:2.206+0.01\left|L_{uckGrade}-99\right|,100 \le L_{uckGrade}<103:2.216+0.011\left|L_{uckGrade}-100\right|,103 \le L_{uckGrade}<104:2.249+0.01\left|L_{uckGrade}-103\right|,104 \le L_{uckGrade}<106:2.259+0.011\left|L_{uckGrade}-104\right|,106 \le L_{uckGrade}<107:2.281+0.01\left|L_{uckGrade}-106\right|,107 \le L_{uckGrade}<109:2.291+0.011\left|L_{uckGrade}-107\right|,109 \le L_{uckGrade}<110:2.313+0.01\left|L_{uckGrade}-109\right|,110 \le L_{uckGrade}<111:2.323+0.011\left|L_{uckGrade}-110\right|,111 \le L_{uckGrade}<112:2.334+0.01\left|L_{uckGrade}-111\right|,112 \le L_{uckGrade}<113:2.344+0.011\left|L_{uckGrade}-112\right|,113 \le L_{uckGrade}<114:2.355+0.01\left|L_{uckGrade}-113\right|,114 \le L_{uckGrade}<115:2.365+0.011\left|L_{uckGrade}-114\right|,115 \le L_{uckGrade}<117:2.376+0.01\left|L_{uckGrade}-115\right|,117 \le L_{uckGrade}<118:2.396+0.011\left|L_{uckGrade}-117\right|,118 \le L_{uckGrade}<121:2.407+0.01\left|L_{uckGrade}-118\right|,121 \le L_{uckGrade}<122:2.437+0.011\left|L_{uckGrade}-121\right|,122 \le L_{uckGrade}<127:2.448+0.01\left|L_{uckGrade}-122\right|,127 \le L_{uckGrade}<128:2.498+0.011\left|L_{uckGrade}-127\right|,128 \le L_{uckGrade}<132:2.509+0.01\left|L_{uckGrade}-128\right|,132 \le L_{uckGrade}<133:2.549+0.009\left|L_{uckGrade}-132\right|,133 \le L_{uckGrade}<139:2.558+0.01\left|L_{uckGrade}-133\right|,139 \le L_{uckGrade}<140:2.618+0.009\left|L_{uckGrade}-139\right|,140 \le L_{uckGrade}<142:2.627+0.01\left|L_{uckGrade}-140\right|,142 \le L_{uckGrade}<143:2.647+0.009\left|L_{uckGrade}-142\right|,143 \le L_{uckGrade}<145:2.656+0.01\left|L_{uckGrade}-143\right|,145 \le L_{uckGrade}<146:2.676+0.009\left|L_{uckGrade}-145\right|,146 \le L_{uckGrade}<147:2.685+0.01\left|L_{uckGrade}-146\right|,147 \le L_{uckGrade}<148:2.695+0.009\left|L_{uckGrade}-147\right|,148 \le L_{uckGrade}<149:2.704+0.01\left|L_{uckGrade}-148\right|,149 \le L_{uckGrade}<150:2.714+0.009\left|L_{uckGrade}-149\right|,150 \le L_{uckGrade}<151:2.723+0.01\left|L_{uckGrade}-150\right|,151 \le L_{uckGrade}<152:2.733+0.009\left|L_{uckGrade}-151\right|,152 \le L_{uckGrade}<153:2.742+0.01\left|L_{uckGrade}-152\right|,153 \le L_{uckGrade}<155:2.752+0.009\left|L_{uckGrade}-153\right|,155 \le L_{uckGrade}<156:2.77+0.01\left|L_{uckGrade}-155\right|,156 \le L_{uckGrade}<159:2.78+0.009\left|L_{uckGrade}-156\right|,159 \le L_{uckGrade}<160:2.807+0.01\left|L_{uckGrade}-159\right|,160 \le L_{uckGrade}<174:2.817+0.009\left|L_{uckGrade}-160\right|,174 \le L_{uckGrade}<175:2.943+0.008\left|L_{uckGrade}-174\right|,175 \le L_{uckGrade}<178:2.951+0.009\left|L_{uckGrade}-175\right|,178 \le L_{uckGrade}<179:2.978+0.008\left|L_{uckGrade}-178\right|,179 \le L_{uckGrade}<181:2.986+0.009\left|L_{uckGrade}-179\right|,181 \le L_{uckGrade}<182:3.004+0.008\left|L_{uckGrade}-181\right|,182 \le L_{uckGrade}<183:3.012+0.009\left|L_{uckGrade}-182\right|,183 \le L_{uckGrade}<184:3.021+0.008\left|L_{uckGrade}-183\right|,184 \le L_{uckGrade}<185:3.029+0.009\left|L_{uckGrade}-184\right|,185 \le L_{uckGrade}<186:3.038+0.008\left|L_{uckGrade}-185\right|,186 \le L_{uckGrade}<187:3.046+0.009\left|L_{uckGrade}-186\right|,187 \le L_{uckGrade}<188:3.055+0.008\left|L_{uckGrade}-187\right|,188 \le L_{uckGrade}<189:3.063+0.009\left|L_{uckGrade}-188\right|,189 \le L_{uckGrade}<190:3.072+0.008\left|L_{uckGrade}-189\right|,190 \le L_{uckGrade}<191:3.08+0.009\left|L_{uckGrade}-190\right|,191 \le L_{uckGrade}<193:3.089+0.008\left|L_{uckGrade}-191\right|,193 \le L_{uckGrade}<194:3.105+0.009\left|L_{uckGrade}-193\right|,194 \le L_{uckGrade}<198:3.114+0.008\left|L_{uckGrade}-194\right|,198 \le L_{uckGrade}<199:3.146+0.009\left|L_{uckGrade}-198\right|,199 \le L_{uckGrade}<209:3.155+0.008\left|L_{uckGrade}-199\right|,209 \le L_{uckGrade}<210:3.235+0.007\left|L_{uckGrade}-209\right|,210 \le L_{uckGrade}<214:3.242+0.008\left|L_{uckGrade}-210\right|,214 \le L_{uckGrade}<215:3.274+0.007\left|L_{uckGrade}-214\right|,215 \le L_{uckGrade}<217:3.281+0.008\left|L_{uckGrade}-215\right|,217 \le L_{uckGrade}<218:3.297+0.007\left|L_{uckGrade}-217\right|,218 \le L_{uckGrade}<220:3.304+0.008\left|L_{uckGrade}-218\right|,220 \le L_{uckGrade}<221:3.32+0.007\left|L_{uckGrade}-220\right|,221 \le L_{uckGrade}<222:3.327+0.008\left|L_{uckGrade}-221\right|,222 \le L_{uckGrade}<223:3.335+0.007\left|L_{uckGrade}-222\right|,223 \le L_{uckGrade}<224:3.342+0.008\left|L_{uckGrade}-223\right|,224 \le L_{uckGrade}<225:3.35+0.007\left|L_{uckGrade}-224\right|,225 \le L_{uckGrade}<226:3.357+0.008\left|L_{uckGrade}-225\right|,226 \le L_{uckGrade}<228:3.365+0.007\left|L_{uckGrade}-226\right|,228 \le L_{uckGrade}<229:3.379+0.008\left|L_{uckGrade}-228\right|,229 \le L_{uckGrade}<231:3.387+0.007\left|L_{uckGrade}-229\right|,231 \le L_{uckGrade}<232:3.401+0.008\left|L_{uckGrade}-231\right|,232 \le L_{uckGrade}<237:3.409+0.007\left|L_{uckGrade}-232\right|,237 \le L_{uckGrade}<238:3.444+0.008\left|L_{uckGrade}-237\right|,238 \le L_{uckGrade}<244:3.452+0.007\left|L_{uckGrade}-238\right|,244 \le L_{uckGrade}<245:3.494+0.006\left|L_{uckGrade}-244\right|,245 \le L_{uckGrade}<250:3.5+0.007\left|L_{uckGrade}-245\right|,250 \le L_{uckGrade}<251:3.535+0.006\left|L_{uckGrade}-250\right|,251 \le L_{uckGrade}<253:3.541+0.007\left|L_{uckGrade}-251\right|,253 \le L_{uckGrade}<254:3.555+0.006\left|L_{uckGrade}-253\right|,254 \le L_{uckGrade}<256:3.561+0.007\left|L_{uckGrade}-254\right|,256 \le L_{uckGrade}<257:3.575+0.006\left|L_{uckGrade}-256\right|,257 \le L_{uckGrade}<258:3.581+0.007\left|L_{uckGrade}-257\right|,258 \le L_{uckGrade}<259:3.588+0.006\left|L_{uckGrade}-258\right|,259 \le L_{uckGrade}<260:3.594+0.007\left|L_{uckGrade}-259\right|,260 \le L_{uckGrade}<261:3.601+0.006\left|L_{uckGrade}-260\right|,261 \le L_{uckGrade}<262:3.607+0.007\left|L_{uckGrade}-261\right|,262 \le L_{uckGrade}<263:3.614+0.006\left|L_{uckGrade}-262\right|,263 \le L_{uckGrade}<264:3.62+0.007\left|L_{uckGrade}-263\right|,264 \le L_{uckGrade}<266:3.627+0.006\left|L_{uckGrade}-264\right|,266 \le L_{uckGrade}<267:3.639+0.007\left|L_{uckGrade}-266\right|,267 \le L_{uckGrade}<270:3.646+0.006\left|L_{uckGrade}-267\right|,270 \le L_{uckGrade}<271:3.664+0.007\left|L_{uckGrade}-270\right|,271 \le L_{uckGrade}<286:3.671+0.006\left|L_{uckGrade}-271\right|,286 \le L_{uckGrade}<287:3.761+0.005\left|L_{uckGrade}-286\right|,287 \le L_{uckGrade}<290:3.766+0.006\left|L_{uckGrade}-287\right|,290 \le L_{uckGrade}<291:3.784+0.005\left|L_{uckGrade}-290\right|,291 \le L_{uckGrade}<292:3.789+0.006\left|L_{uckGrade}-291\right|,292 \le L_{uckGrade}<293:3.795+0.005\left|L_{uckGrade}-292\right|,293 \le L_{uckGrade}<295:3.8+0.006\left|L_{uckGrade}-293\right|,295 \le L_{uckGrade}<296:3.812+0.005\left|L_{uckGrade}-295\right|,296 \le L_{uckGrade}<297:3.817+0.006\left|L_{uckGrade}-296\right|,297 \le L_{uckGrade}<298:3.823+0.005\left|L_{uckGrade}-297\right|,298 \le L_{uckGrade}<299:3.828+0.006\left|L_{uckGrade}-298\right|,299 \le L_{uckGrade}<301:3.834+0.005\left|L_{uckGrade}-299\right|,301 \le L_{uckGrade}<302:3.844+0.006\left|L_{uckGrade}-301\right|,302 \le L_{uckGrade}<304:3.85+0.005\left|L_{uckGrade}-302\right|,304 \le L_{uckGrade}<305:3.86+0.006\left|L_{uckGrade}-304\right|,305 \le L_{uckGrade}<308:3.866+0.005\left|L_{uckGrade}-305\right|,308 \le L_{uckGrade}<309:3.881+0.006\left|L_{uckGrade}-308\right|,309 \le L_{uckGrade}<322:3.887+0.005\left|L_{uckGrade}-309\right|,322 \le L_{uckGrade}<323:3.952+0.004\left|L_{uckGrade}-322\right|,323 \le L_{uckGrade}<326:3.956+0.005\left|L_{uckGrade}-323\right|,326 \le L_{uckGrade}<327:3.971+0.004\left|L_{uckGrade}-326\right|,327 \le L_{uckGrade}<329:3.975+0.005\left|L_{uckGrade}-327\right|,329 \le L_{uckGrade}<330:3.985+0.004\left|L_{uckGrade}-329\right|,330 \le L_{uckGrade}<331:3.989+0.005\left|L_{uckGrade}-330\right|,331 \le L_{uckGrade}<332:3.994+0.004\left|L_{uckGrade}-331\right|,332 \le L_{uckGrade}<334:3.998+0.005\left|L_{uckGrade}-332\right|,334 \le L_{uckGrade}<336:4.008+0.004\left|L_{uckGrade}-334\right|,336 \le L_{uckGrade}<337:4.016+0.005\left|L_{uckGrade}-336\right|,337 \le L_{uckGrade}<338:4.021+0.004\left|L_{uckGrade}-337\right|,338 \le L_{uckGrade}<339:4.025+0.005\left|L_{uckGrade}-338\right|,339 \le L_{uckGrade}<341:4.03+0.004\left|L_{uckGrade}-339\right|,341 \le L_{uckGrade}<342:4.038+0.005\left|L_{uckGrade}-341\right|,342 \le L_{uckGrade}<345:4.043+0.004\left|L_{uckGrade}-342\right|,345 \le L_{uckGrade}<346:4.055+0.005\left|L_{uckGrade}-345\right|,346 \le L_{uckGrade}<358:4.06+0.004\left|L_{uckGrade}-346\right|,358 \le L_{uckGrade}<359:4.108+0.003\left|L_{uckGrade}-358\right|,359 \le L_{uckGrade}<363:4.111+0.004\left|L_{uckGrade}-359\right|,363 \le L_{uckGrade}<364:4.127+0.003\left|L_{uckGrade}-363\right|,364 \le L_{uckGrade}<366:4.13+0.004\left|L_{uckGrade}-364\right|,366 \le L_{uckGrade}<367:4.138+0.003\left|L_{uckGrade}-366\right|,367 \le L_{uckGrade}<368:4.141+0.004\left|L_{uckGrade}-367\right|,368 \le L_{uckGrade}<369:4.145+0.003\left|L_{uckGrade}-368\right|,369 \le L_{uckGrade}<370:4.148+0.004\left|L_{uckGrade}-369\right|,370 \le L_{uckGrade}<371:4.152+0.003\left|L_{uckGrade}-370\right|,371 \le L_{uckGrade}<372:4.155+0.004\left|L_{uckGrade}-371\right|,372 \le L_{uckGrade}<373:4.159+0.003\left|L_{uckGrade}-372\right|,373 \le L_{uckGrade}<374:4.162+0.004\left|L_{uckGrade}-373\right|,374 \le L_{uckGrade}<375:4.166+0.003\left|L_{uckGrade}-374\right|,375 \le L_{uckGrade}<376:4.169+0.004\left|L_{uckGrade}-375\right|,376 \le L_{uckGrade}<379:4.173+0.003\left|L_{uckGrade}-376\right|,379 \le L_{uckGrade}<380:4.182+0.004\left|L_{uckGrade}-379\right|,380 \le L_{uckGrade}<383:4.186+0.003\left|L_{uckGrade}-380\right|,383 \le L_{uckGrade}<384:4.195+0.004\left|L_{uckGrade}-383\right|,384 \le L_{uckGrade}<394:4.199+0.003\left|L_{uckGrade}-384\right|,394 \le L_{uckGrade}<395:4.229+0.002\left|L_{uckGrade}-394\right|,395 \le L_{uckGrade}<399:4.231+0.003\left|L_{uckGrade}-395\right|,399 \le L_{uckGrade}<400:4.243+0.002\left|L_{uckGrade}-399\right|,400 \le L_{uckGrade}<402:4.245+0.003\left|L_{uckGrade}-400\right|,402 \le L_{uckGrade}<403:4.251+0.002\left|L_{uckGrade}-402\right|,403 \le L_{uckGrade}<405:4.253+0.003\left|L_{uckGrade}-403\right|,405 \le L_{uckGrade}<406:4.259+0.002\left|L_{uckGrade}-405\right|,406 \le L_{uckGrade}<407:4.261+0.003\left|L_{uckGrade}-406\right|,407 \le L_{uckGrade}<408:4.264+0.002\left|L_{uckGrade}-407\right|,408 \le L_{uckGrade}<409:4.266+0.003\left|L_{uckGrade}-408\right|,409 \le L_{uckGrade}<410:4.269+0.002\left|L_{uckGrade}-409\right|,410 \le L_{uckGrade}<411:4.271+0.003\left|L_{uckGrade}-410\right|,411 \le L_{uckGrade}<413:4.274+0.002\left|L_{uckGrade}-411\right|,413 \le L_{uckGrade}<414:4.278+0.003\left|L_{uckGrade}-413\right|,414 \le L_{uckGrade}<416:4.281+0.002\left|L_{uckGrade}-414\right|,416 \le L_{uckGrade}<417:4.285+0.003\left|L_{uckGrade}-416\right|,417 \le L_{uckGrade}<421:4.288+0.002\left|L_{uckGrade}-417\right|,421 \le L_{uckGrade}<422:4.296+0.003\left|L_{uckGrade}-421\right|,422 \le L_{uckGrade}<431:4.299+0.002\left|L_{uckGrade}-422\right|,431 \le L_{uckGrade}<432:4.317+0.001\left|L_{uckGrade}-431\right|,432 \le L_{uckGrade}<436:4.318+0.002\left|L_{uckGrade}-432\right|,436 \le L_{uckGrade}<437:4.326+0.001\left|L_{uckGrade}-436\right|,437 \le L_{uckGrade}<439:4.327+0.002\left|L_{uckGrade}-437\right|,439 \le L_{uckGrade}<440:4.331+0.001\left|L_{uckGrade}-439\right|,440 \le L_{uckGrade}<442:4.332+0.002\left|L_{uckGrade}-440\right|,442 \le L_{uckGrade}<443:4.336+0.001\left|L_{uckGrade}-442\right|,443 \le L_{uckGrade}<444:4.337+0.002\left|L_{uckGrade}-443\right|,444 \le L_{uckGrade}<445:4.339+0.001\left|L_{uckGrade}-444\right|,445 \le L_{uckGrade}<446:4.34+0.002\left|L_{uckGrade}-445\right|,446 \le L_{uckGrade}<447:4.342+0.001\left|L_{uckGrade}-446\right|,447 \le L_{uckGrade}<448:4.343+0.002\left|L_{uckGrade}-447\right|,448 \le L_{uckGrade}<450:4.345+0.001\left|L_{uckGrade}-448\right|,450 \le L_{uckGrade}<451:4.347+0.002\left|L_{uckGrade}-450\right|,451 \le L_{uckGrade}<453:4.349+0.001\left|L_{uckGrade}-451\right|,453 \le L_{uckGrade}<454:4.351+0.002\left|L_{uckGrade}-453\right|,454 \le L_{uckGrade}<458:4.353+0.001\left|L_{uckGrade}-454\right|,458 \le L_{uckGrade}<459:4.357+0.002\left|L_{uckGrade}-458\right|,459 \le L_{uckGrade}<467:4.359+0.001\left|L_{uckGrade}-459\right|,467 \le L_{uckGrade}<468:4.367+0\left|L_{uckGrade}-467\right|,468 \le L_{uckGrade}<473:4.367+0.001\left|L_{uckGrade}-468\right|,473 \le L_{uckGrade}<474:4.372+0\left|L_{uckGrade}-473\right|,474 \le L_{uckGrade}<476:4.372+0.001\left|L_{uckGrade}-474\right|,476 \le L_{uckGrade}<477:4.374+0\left|L_{uckGrade}-476\right|,477 \le L_{uckGrade}<479:4.374+0.001\left|L_{uckGrade}-477\right|,479 \le L_{uckGrade}<480:4.376+0\left|L_{uckGrade}-479\right|,480 \le L_{uckGrade}<481:4.376+0.001\left|L_{uckGrade}-480\right|,481 \le L_{uckGrade}<482:4.377+0\left|L_{uckGrade}-481\right|,482 \le L_{uckGrade}<483:4.377+0.001\left|L_{uckGrade}-482\right|,483 \le L_{uckGrade}<484:4.378+0\left|L_{uckGrade}-483\right|,484 \le L_{uckGrade}<485:4.378+0.001\left|L_{uckGrade}-484\right|,485 \le L_{uckGrade}<487:4.379+0\left|L_{uckGrade}-485\right|,487 \le L_{uckGrade}<488:4.379+0.001\left|L_{uckGrade}-487\right|,488 \le L_{uckGrade}<490:4.38+0\left|L_{uckGrade}-488\right|,490 \le L_{uckGrade}<491:4.38+0.001\left|L_{uckGrade}-490\right|,491 \le L_{uckGrade}<496:4.381+0\left|L_{uckGrade}-491\right|,496 \le L_{uckGrade}<497:4.381+0.001\left|L_{uckGrade}-496\right|,497 \le L_{uckGrade}<500:4.382+0\left|L_{uckGrade}-497\right|\right\}

See Example for how to use.



Max Spell Count

Determines the number of spells that can be stored at once. For example, at base, Wizard can store up to 5 Fireballs. This can be increased with Max Spell Count Bonus multiplicatively

Enchantment Stats

Stats that come from weapons, armors or jewelry imbued with item Enchantments.

Enchantments that aren't traditional Stats and only exist in a Damage/Healing formula are listed below and can also be found in Damage_Calculation and Healing.

Enchantment Description
Physical Base Healing Increases Physical Base Healing performed
Magical Base Healing Increases Magical Base Healing performed
Armor Penetration Increases the amount of Physical Damage that bypasses enemy's Physical Damage Reduction
Magic Penetration Increases the amount of Magical Damage that bypasses enemy's Magical Damage Reduction
Projectile Reduction Decreases damage taken from projectiles (Arrows, Throwing Knives, etc.)
Headshot Damage Reduction Decreases Hit Location Bonus additively if targeting the head
True Physical Damage Increases Physical Damage dealt that is not influenced by enemy defences
True Magical Damage Increases Magical Damage dealt that is not influenced by enemy defences
Weapon Damage Increases Gear Weapon Damage
Additional Physical Damage Increases Physical Damage dealt (not affected by Physical Power Bonus)
Additional Magical Damage Increases Magical Damage dealt (not affected by Magical Power Bonus)
Luck Increases Luck for obtaining items)

For the possible values of Enchantments and their historical rolls, see Enchantment Values

Unimplemented Stats

These stats are not yet implemented.

Utility Effectiveness Bonus

Determines the bonus effectiveness of your utility items