From Dark and Darker Wiki

No edit summary
Line 10: Line 10:
Luck is capped at 500.<br>
Luck is capped at 500.<br>
Sources of Luck:
Sources of Luck:
*65 from max level blessing of Blythar.
*20 from max level blessing of Blythar.
*50 from [[Bard#Perks-0|Bard's Wanderer's Luck]]
*50 from [[Bard#Perks-0|Bard's Wanderer's Luck]]
*150 luck roll from a large [[Potion of Luck]]
*150 luck roll from a large [[Potion of Luck]]

Revision as of 21:48, 25 September 2024

Stats Damage Spell Restoration Luck
Enchantments Health Impact Power Footstep Sound
Healing Action/Interaction/Cast Speed Silence
Shield Looted Handled Supplied Experience
Spells

Loot is rolled when you open the container or kill the mob.

Whoever opens a container first or deals the killing blow to a monster is the person whose luck is used to calculate the drops.
(It is not confirmed if Bard's Unchained Harmony rolls the loot table when it opens the containers.)

Any individual point of Luck contributes to a change in drop chances.

Luck is capped at 500.
Sources of Luck:

Loot Drop Tables and Drop Rate Tables

Each drop instance makes use of three pieces of information: the Loot table, the Drop Rate table, and the player's Luck.

Loot tables list all possible items for a specific drop instance, and for each item therein it associates a Luck Grade.
Drop Rate tables assign a "rate" to each Luck Grade; when normalized, these rates represent the probability of getting a drop of that Luck Grade.

Each Luck Grade's drop rate is split evenly between items that share that Luck Grade. This means that items sharing a Loot Drop table and Luck Grade, will always have the same probability of dropping.
However, be aware that Monsters and Containers can have multiple Loot Drop Tables, each with their own Drop Rate table. See Lich for example.

A Drop can be rolled more than once, but each roll is independent of the others.
The Elite variant of Lich rolls their main gear Loot and Drop tables a total of 3 times, theoretically making it possible (though extremely unlikely) to get 3 identical Artifacts from a single Elite Lich kill.

Luck Scalar

Luck Scalars are but one piece of information needed to calculate drop probability at X Luck.

The calculation is not a simple multiplication, so do not expect Uniques to be 4.382 times more common at 500 Luck.

The true effect of Luck varies depending on Drop Rate tables. See the Luck subsection Probabilities from Luck for an in-depth explanation of how Luck Scalars affect probabilities of drops.

Additionally, luck works with a hidden property called Luck Grade. While the table below has luck grade colored similar to item rarities, the two properties are not equivalent.
Many loot tables will match Item Rarity one to one with item Luck Grade, but there are exceptions. Don't fall into the trap of thinking luck makes higher rarities more common; see the Cave Troll's quest drops for a counterexample.

Luck Scalar Table

Luck Grade Luck
0 50 100 150 200 250 300 350 400 450 500
0 1.000 0.950 0.900 0.850 0.800 0.750 0.700 0.650 0.600 0.550 0.500
1 1.000 0.950 0.900 0.850 0.800 0.750 0.700 0.650 0.600 0.550 0.500
2 1.000 0.975 0.950 0.925 0.900 0.875 0.850 0.825 0.800 0.775 0.750
3 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
4 1.000 1.476 1.901 2.277 2.602 2.878 3.103 3.279 3.404 3.480 3.505
5 1.000 1.547 2.036 2.468 2.842 3.159 3.418 3.620 3.765 3.851 3.881
6 1.000 1.618 2.171 2.659 3.083 3.441 3.734 3.962 4.125 4.223 4.257
7 1.000 1.642 2.216 2.723 3.163 3.535 3.839 4.076 4.245 4.347 4.382
8 1.000 1.642 2.216 2.723 3.163 3.535 3.839 4.076 4.245 4.347 4.382

If the Luck Scalar Table and Graph don't cover a Scalar value you wish to see, use the desmos graph. The desmos graph displays the LaTeX equations. While the curves are continuous, keep in mind that fractional values of Luck do not exist.

Luck Scalar Graph

LaTeX Formula

Can be pasted into Desmos or other LaTeX editors for quick use of the equation.

Triple click to select all. Note: Some browsers will add an extra return carriage (line end) after the formula. Remove it before pasting for best results.

L_{uckGrade00}(L_{uckGrade})=\left\{0 \le L_{uckGrade}<500:1+-0.001\left|L_{uckGrade}-0\right|\right\}

See Example for how to use.


LaTeX Formula

Can be pasted into Desmos or other LaTeX editors for quick use of the equation.

Triple click to select all. Note: Some browsers will add an extra return carriage (line end) after the formula. Remove it before pasting for best results.

L_{uckGrade01}(L_{uckGrade})=\left\{0 \le L_{uckGrade}<500:1+-0.001\left|L_{uckGrade}-0\right|\right\}

See Example for how to use.


LaTeX Formula

Can be pasted into Desmos or other LaTeX editors for quick use of the equation.

Triple click to select all. Note: Some browsers will add an extra return carriage (line end) after the formula. Remove it before pasting for best results.

L_{uckGrade02}(L_{uckGrade})=\left\{0 \le L_{uckGrade}<1:1+0\left|L_{uckGrade}-0\right|,1 \le L_{uckGrade}<2:1+-0.001\left|L_{uckGrade}-1\right|,2 \le L_{uckGrade}<3:0.999+0\left|L_{uckGrade}-2\right|,3 \le L_{uckGrade}<4:0.999+-0.001\left|L_{uckGrade}-3\right|,4 \le L_{uckGrade}<5:0.998+0\left|L_{uckGrade}-4\right|,5 \le L_{uckGrade}<6:0.998+-0.001\left|L_{uckGrade}-5\right|,6 \le L_{uckGrade}<7:0.997+0\left|L_{uckGrade}-6\right|,7 \le L_{uckGrade}<8:0.997+-0.001\left|L_{uckGrade}-7\right|,8 \le L_{uckGrade}<9:0.996+0\left|L_{uckGrade}-8\right|,9 \le L_{uckGrade}<10:0.996+-0.001\left|L_{uckGrade}-9\right|,10 \le L_{uckGrade}<11:0.995+0\left|L_{uckGrade}-10\right|,11 \le L_{uckGrade}<12:0.995+-0.001\left|L_{uckGrade}-11\right|,12 \le L_{uckGrade}<13:0.994+0\left|L_{uckGrade}-12\right|,13 \le L_{uckGrade}<14:0.994+-0.001\left|L_{uckGrade}-13\right|,14 \le L_{uckGrade}<15:0.993+0\left|L_{uckGrade}-14\right|,15 \le L_{uckGrade}<16:0.993+-0.001\left|L_{uckGrade}-15\right|,16 \le L_{uckGrade}<17:0.992+0\left|L_{uckGrade}-16\right|,17 \le L_{uckGrade}<18:0.992+-0.001\left|L_{uckGrade}-17\right|,18 \le L_{uckGrade}<19:0.991+0\left|L_{uckGrade}-18\right|,19 \le L_{uckGrade}<20:0.991+-0.001\left|L_{uckGrade}-19\right|,20 \le L_{uckGrade}<21:0.99+0\left|L_{uckGrade}-20\right|,21 \le L_{uckGrade}<22:0.99+-0.001\left|L_{uckGrade}-21\right|,22 \le L_{uckGrade}<23:0.989+0\left|L_{uckGrade}-22\right|,23 \le L_{uckGrade}<24:0.989+-0.001\left|L_{uckGrade}-23\right|,24 \le L_{uckGrade}<25:0.988+0\left|L_{uckGrade}-24\right|,25 \le L_{uckGrade}<26:0.988+-0.001\left|L_{uckGrade}-25\right|,26 \le L_{uckGrade}<27:0.987+0\left|L_{uckGrade}-26\right|,27 \le L_{uckGrade}<28:0.987+-0.001\left|L_{uckGrade}-27\right|,28 \le L_{uckGrade}<29:0.986+0\left|L_{uckGrade}-28\right|,29 \le L_{uckGrade}<30:0.986+-0.001\left|L_{uckGrade}-29\right|,30 \le L_{uckGrade}<31:0.985+0\left|L_{uckGrade}-30\right|,31 \le L_{uckGrade}<32:0.985+-0.001\left|L_{uckGrade}-31\right|,32 \le L_{uckGrade}<33:0.984+0\left|L_{uckGrade}-32\right|,33 \le L_{uckGrade}<34:0.984+-0.001\left|L_{uckGrade}-33\right|,34 \le L_{uckGrade}<35:0.983+0\left|L_{uckGrade}-34\right|,35 \le L_{uckGrade}<36:0.983+-0.001\left|L_{uckGrade}-35\right|,36 \le L_{uckGrade}<37:0.982+0\left|L_{uckGrade}-36\right|,37 \le L_{uckGrade}<38:0.982+-0.001\left|L_{uckGrade}-37\right|,38 \le L_{uckGrade}<39:0.981+0\left|L_{uckGrade}-38\right|,39 \le L_{uckGrade}<40:0.981+-0.001\left|L_{uckGrade}-39\right|,40 \le L_{uckGrade}<41:0.98+0\left|L_{uckGrade}-40\right|,41 \le L_{uckGrade}<42:0.98+-0.001\left|L_{uckGrade}-41\right|,42 \le L_{uckGrade}<43:0.979+0\left|L_{uckGrade}-42\right|,43 \le L_{uckGrade}<44:0.979+-0.001\left|L_{uckGrade}-43\right|,44 \le L_{uckGrade}<45:0.978+0\left|L_{uckGrade}-44\right|,45 \le L_{uckGrade}<46:0.978+-0.001\left|L_{uckGrade}-45\right|,46 \le L_{uckGrade}<47:0.977+0\left|L_{uckGrade}-46\right|,47 \le L_{uckGrade}<48:0.977+-0.001\left|L_{uckGrade}-47\right|,48 \le L_{uckGrade}<49:0.976+0\left|L_{uckGrade}-48\right|,49 \le L_{uckGrade}<50:0.976+-0.001\left|L_{uckGrade}-49\right|,50 \le L_{uckGrade}<51:0.975+0\left|L_{uckGrade}-50\right|,51 \le L_{uckGrade}<52:0.975+-0.001\left|L_{uckGrade}-51\right|,52 \le L_{uckGrade}<53:0.974+0\left|L_{uckGrade}-52\right|,53 \le L_{uckGrade}<54:0.974+-0.001\left|L_{uckGrade}-53\right|,54 \le L_{uckGrade}<55:0.973+0\left|L_{uckGrade}-54\right|,55 \le L_{uckGrade}<56:0.973+-0.001\left|L_{uckGrade}-55\right|,56 \le L_{uckGrade}<57:0.972+0\left|L_{uckGrade}-56\right|,57 \le L_{uckGrade}<58:0.972+-0.001\left|L_{uckGrade}-57\right|,58 \le L_{uckGrade}<59:0.971+0\left|L_{uckGrade}-58\right|,59 \le L_{uckGrade}<60:0.971+-0.001\left|L_{uckGrade}-59\right|,60 \le L_{uckGrade}<61:0.97+0\left|L_{uckGrade}-60\right|,61 \le L_{uckGrade}<62:0.97+-0.001\left|L_{uckGrade}-61\right|,62 \le L_{uckGrade}<63:0.969+0\left|L_{uckGrade}-62\right|,63 \le L_{uckGrade}<64:0.969+-0.001\left|L_{uckGrade}-63\right|,64 \le L_{uckGrade}<65:0.968+0\left|L_{uckGrade}-64\right|,65 \le L_{uckGrade}<66:0.968+-0.001\left|L_{uckGrade}-65\right|,66 \le L_{uckGrade}<67:0.967+0\left|L_{uckGrade}-66\right|,67 \le L_{uckGrade}<68:0.967+-0.001\left|L_{uckGrade}-67\right|,68 \le L_{uckGrade}<69:0.966+0\left|L_{uckGrade}-68\right|,69 \le L_{uckGrade}<70:0.966+-0.001\left|L_{uckGrade}-69\right|,70 \le L_{uckGrade}<71:0.965+0\left|L_{uckGrade}-70\right|,71 \le L_{uckGrade}<72:0.965+-0.001\left|L_{uckGrade}-71\right|,72 \le L_{uckGrade}<73:0.964+0\left|L_{uckGrade}-72\right|,73 \le L_{uckGrade}<74:0.964+-0.001\left|L_{uckGrade}-73\right|,74 \le L_{uckGrade}<75:0.963+0\left|L_{uckGrade}-74\right|,75 \le L_{uckGrade}<76:0.963+-0.001\left|L_{uckGrade}-75\right|,76 \le L_{uckGrade}<77:0.962+0\left|L_{uckGrade}-76\right|,77 \le L_{uckGrade}<78:0.962+-0.001\left|L_{uckGrade}-77\right|,78 \le L_{uckGrade}<79:0.961+0\left|L_{uckGrade}-78\right|,79 \le L_{uckGrade}<80:0.961+-0.001\left|L_{uckGrade}-79\right|,80 \le L_{uckGrade}<81:0.96+0\left|L_{uckGrade}-80\right|,81 \le L_{uckGrade}<82:0.96+-0.001\left|L_{uckGrade}-81\right|,82 \le L_{uckGrade}<83:0.959+0\left|L_{uckGrade}-82\right|,83 \le L_{uckGrade}<84:0.959+-0.001\left|L_{uckGrade}-83\right|,84 \le L_{uckGrade}<85:0.958+0\left|L_{uckGrade}-84\right|,85 \le L_{uckGrade}<86:0.958+-0.001\left|L_{uckGrade}-85\right|,86 \le L_{uckGrade}<87:0.957+0\left|L_{uckGrade}-86\right|,87 \le L_{uckGrade}<88:0.957+-0.001\left|L_{uckGrade}-87\right|,88 \le L_{uckGrade}<89:0.956+0\left|L_{uckGrade}-88\right|,89 \le L_{uckGrade}<90:0.956+-0.001\left|L_{uckGrade}-89\right|,90 \le L_{uckGrade}<91:0.955+0\left|L_{uckGrade}-90\right|,91 \le L_{uckGrade}<92:0.955+-0.001\left|L_{uckGrade}-91\right|,92 \le L_{uckGrade}<93:0.954+0\left|L_{uckGrade}-92\right|,93 \le L_{uckGrade}<94:0.954+-0.001\left|L_{uckGrade}-93\right|,94 \le L_{uckGrade}<95:0.953+0\left|L_{uckGrade}-94\right|,95 \le L_{uckGrade}<96:0.953+-0.001\left|L_{uckGrade}-95\right|,96 \le L_{uckGrade}<97:0.952+0\left|L_{uckGrade}-96\right|,97 \le L_{uckGrade}<98:0.952+-0.001\left|L_{uckGrade}-97\right|,98 \le L_{uckGrade}<99:0.951+0\left|L_{uckGrade}-98\right|,99 \le L_{uckGrade}<100:0.951+-0.001\left|L_{uckGrade}-99\right|,100 \le L_{uckGrade}<101:0.95+0\left|L_{uckGrade}-100\right|,101 \le L_{uckGrade}<102:0.95+-0.001\left|L_{uckGrade}-101\right|,102 \le L_{uckGrade}<103:0.949+0\left|L_{uckGrade}-102\right|,103 \le L_{uckGrade}<104:0.949+-0.001\left|L_{uckGrade}-103\right|,104 \le L_{uckGrade}<105:0.948+0\left|L_{uckGrade}-104\right|,105 \le L_{uckGrade}<106:0.948+-0.001\left|L_{uckGrade}-105\right|,106 \le L_{uckGrade}<107:0.947+0\left|L_{uckGrade}-106\right|,107 \le L_{uckGrade}<108:0.947+-0.001\left|L_{uckGrade}-107\right|,108 \le L_{uckGrade}<109:0.946+0\left|L_{uckGrade}-108\right|,109 \le L_{uckGrade}<110:0.946+-0.001\left|L_{uckGrade}-109\right|,110 \le L_{uckGrade}<111:0.945+0\left|L_{uckGrade}-110\right|,111 \le L_{uckGrade}<112:0.945+-0.001\left|L_{uckGrade}-111\right|,112 \le L_{uckGrade}<113:0.944+0\left|L_{uckGrade}-112\right|,113 \le L_{uckGrade}<114:0.944+-0.001\left|L_{uckGrade}-113\right|,114 \le L_{uckGrade}<115:0.943+0\left|L_{uckGrade}-114\right|,115 \le L_{uckGrade}<116:0.943+-0.001\left|L_{uckGrade}-115\right|,116 \le L_{uckGrade}<117:0.942+0\left|L_{uckGrade}-116\right|,117 \le L_{uckGrade}<118:0.942+-0.001\left|L_{uckGrade}-117\right|,118 \le L_{uckGrade}<119:0.941+0\left|L_{uckGrade}-118\right|,119 \le L_{uckGrade}<120:0.941+-0.001\left|L_{uckGrade}-119\right|,120 \le L_{uckGrade}<121:0.94+0\left|L_{uckGrade}-120\right|,121 \le L_{uckGrade}<122:0.94+-0.001\left|L_{uckGrade}-121\right|,122 \le L_{uckGrade}<123:0.939+0\left|L_{uckGrade}-122\right|,123 \le L_{uckGrade}<124:0.939+-0.001\left|L_{uckGrade}-123\right|,124 \le L_{uckGrade}<125:0.938+0\left|L_{uckGrade}-124\right|,125 \le L_{uckGrade}<126:0.938+-0.001\left|L_{uckGrade}-125\right|,126 \le L_{uckGrade}<127:0.937+0\left|L_{uckGrade}-126\right|,127 \le L_{uckGrade}<128:0.937+-0.001\left|L_{uckGrade}-127\right|,128 \le L_{uckGrade}<129:0.936+0\left|L_{uckGrade}-128\right|,129 \le L_{uckGrade}<130:0.936+-0.001\left|L_{uckGrade}-129\right|,130 \le L_{uckGrade}<131:0.935+0\left|L_{uckGrade}-130\right|,131 \le L_{uckGrade}<132:0.935+-0.001\left|L_{uckGrade}-131\right|,132 \le L_{uckGrade}<133:0.934+0\left|L_{uckGrade}-132\right|,133 \le L_{uckGrade}<134:0.934+-0.001\left|L_{uckGrade}-133\right|,134 \le L_{uckGrade}<135:0.933+0\left|L_{uckGrade}-134\right|,135 \le L_{uckGrade}<136:0.933+-0.001\left|L_{uckGrade}-135\right|,136 \le L_{uckGrade}<137:0.932+0\left|L_{uckGrade}-136\right|,137 \le L_{uckGrade}<138:0.932+-0.001\left|L_{uckGrade}-137\right|,138 \le L_{uckGrade}<139:0.931+0\left|L_{uckGrade}-138\right|,139 \le L_{uckGrade}<140:0.931+-0.001\left|L_{uckGrade}-139\right|,140 \le L_{uckGrade}<141:0.93+0\left|L_{uckGrade}-140\right|,141 \le L_{uckGrade}<142:0.93+-0.001\left|L_{uckGrade}-141\right|,142 \le L_{uckGrade}<143:0.929+0\left|L_{uckGrade}-142\right|,143 \le L_{uckGrade}<144:0.929+-0.001\left|L_{uckGrade}-143\right|,144 \le L_{uckGrade}<145:0.928+0\left|L_{uckGrade}-144\right|,145 \le L_{uckGrade}<146:0.928+-0.001\left|L_{uckGrade}-145\right|,146 \le L_{uckGrade}<147:0.927+0\left|L_{uckGrade}-146\right|,147 \le L_{uckGrade}<148:0.927+-0.001\left|L_{uckGrade}-147\right|,148 \le L_{uckGrade}<149:0.926+0\left|L_{uckGrade}-148\right|,149 \le L_{uckGrade}<150:0.926+-0.001\left|L_{uckGrade}-149\right|,150 \le L_{uckGrade}<151:0.925+0\left|L_{uckGrade}-150\right|,151 \le L_{uckGrade}<152:0.925+-0.001\left|L_{uckGrade}-151\right|,152 \le L_{uckGrade}<153:0.924+0\left|L_{uckGrade}-152\right|,153 \le L_{uckGrade}<154:0.924+-0.001\left|L_{uckGrade}-153\right|,154 \le L_{uckGrade}<155:0.923+0\left|L_{uckGrade}-154\right|,155 \le L_{uckGrade}<156:0.923+-0.001\left|L_{uckGrade}-155\right|,156 \le L_{uckGrade}<157:0.922+0\left|L_{uckGrade}-156\right|,157 \le L_{uckGrade}<158:0.922+-0.001\left|L_{uckGrade}-157\right|,158 \le L_{uckGrade}<159:0.921+0\left|L_{uckGrade}-158\right|,159 \le L_{uckGrade}<160:0.921+-0.001\left|L_{uckGrade}-159\right|,160 \le L_{uckGrade}<161:0.92+0\left|L_{uckGrade}-160\right|,161 \le L_{uckGrade}<162:0.92+-0.001\left|L_{uckGrade}-161\right|,162 \le L_{uckGrade}<163:0.919+0\left|L_{uckGrade}-162\right|,163 \le L_{uckGrade}<164:0.919+-0.001\left|L_{uckGrade}-163\right|,164 \le L_{uckGrade}<165:0.918+0\left|L_{uckGrade}-164\right|,165 \le L_{uckGrade}<166:0.918+-0.001\left|L_{uckGrade}-165\right|,166 \le L_{uckGrade}<167:0.917+0\left|L_{uckGrade}-166\right|,167 \le L_{uckGrade}<168:0.917+-0.001\left|L_{uckGrade}-167\right|,168 \le L_{uckGrade}<169:0.916+0\left|L_{uckGrade}-168\right|,169 \le L_{uckGrade}<170:0.916+-0.001\left|L_{uckGrade}-169\right|,170 \le L_{uckGrade}<171:0.915+0\left|L_{uckGrade}-170\right|,171 \le L_{uckGrade}<172:0.915+-0.001\left|L_{uckGrade}-171\right|,172 \le L_{uckGrade}<173:0.914+0\left|L_{uckGrade}-172\right|,173 \le L_{uckGrade}<174:0.914+-0.001\left|L_{uckGrade}-173\right|,174 \le L_{uckGrade}<175:0.913+0\left|L_{uckGrade}-174\right|,175 \le L_{uckGrade}<176:0.913+-0.001\left|L_{uckGrade}-175\right|,176 \le L_{uckGrade}<177:0.912+0\left|L_{uckGrade}-176\right|,177 \le L_{uckGrade}<178:0.912+-0.001\left|L_{uckGrade}-177\right|,178 \le L_{uckGrade}<179:0.911+0\left|L_{uckGrade}-178\right|,179 \le L_{uckGrade}<180:0.911+-0.001\left|L_{uckGrade}-179\right|,180 \le L_{uckGrade}<181:0.91+0\left|L_{uckGrade}-180\right|,181 \le L_{uckGrade}<182:0.91+-0.001\left|L_{uckGrade}-181\right|,182 \le L_{uckGrade}<183:0.909+0\left|L_{uckGrade}-182\right|,183 \le L_{uckGrade}<184:0.909+-0.001\left|L_{uckGrade}-183\right|,184 \le L_{uckGrade}<185:0.908+0\left|L_{uckGrade}-184\right|,185 \le L_{uckGrade}<186:0.908+-0.001\left|L_{uckGrade}-185\right|,186 \le L_{uckGrade}<187:0.907+0\left|L_{uckGrade}-186\right|,187 \le L_{uckGrade}<188:0.907+-0.001\left|L_{uckGrade}-187\right|,188 \le L_{uckGrade}<189:0.906+0\left|L_{uckGrade}-188\right|,189 \le L_{uckGrade}<190:0.906+-0.001\left|L_{uckGrade}-189\right|,190 \le L_{uckGrade}<191:0.905+0\left|L_{uckGrade}-190\right|,191 \le L_{uckGrade}<192:0.905+-0.001\left|L_{uckGrade}-191\right|,192 \le L_{uckGrade}<193:0.904+0\left|L_{uckGrade}-192\right|,193 \le L_{uckGrade}<194:0.904+-0.001\left|L_{uckGrade}-193\right|,194 \le L_{uckGrade}<195:0.903+0\left|L_{uckGrade}-194\right|,195 \le L_{uckGrade}<196:0.903+-0.001\left|L_{uckGrade}-195\right|,196 \le L_{uckGrade}<197:0.902+0\left|L_{uckGrade}-196\right|,197 \le L_{uckGrade}<198:0.902+-0.001\left|L_{uckGrade}-197\right|,198 \le L_{uckGrade}<199:0.901+0\left|L_{uckGrade}-198\right|,199 \le L_{uckGrade}<200:0.901+-0.001\left|L_{uckGrade}-199\right|,200 \le L_{uckGrade}<201:0.9+0\left|L_{uckGrade}-200\right|,201 \le L_{uckGrade}<202:0.9+-0.001\left|L_{uckGrade}-201\right|,202 \le L_{uckGrade}<203:0.899+0\left|L_{uckGrade}-202\right|,203 \le L_{uckGrade}<204:0.899+-0.001\left|L_{uckGrade}-203\right|,204 \le L_{uckGrade}<205:0.898+0\left|L_{uckGrade}-204\right|,205 \le L_{uckGrade}<206:0.898+-0.001\left|L_{uckGrade}-205\right|,206 \le L_{uckGrade}<207:0.897+0\left|L_{uckGrade}-206\right|,207 \le L_{uckGrade}<208:0.897+-0.001\left|L_{uckGrade}-207\right|,208 \le L_{uckGrade}<209:0.896+0\left|L_{uckGrade}-208\right|,209 \le L_{uckGrade}<210:0.896+-0.001\left|L_{uckGrade}-209\right|,210 \le L_{uckGrade}<211:0.895+0\left|L_{uckGrade}-210\right|,211 \le L_{uckGrade}<212:0.895+-0.001\left|L_{uckGrade}-211\right|,212 \le L_{uckGrade}<213:0.894+0\left|L_{uckGrade}-212\right|,213 \le L_{uckGrade}<214:0.894+-0.001\left|L_{uckGrade}-213\right|,214 \le L_{uckGrade}<215:0.893+0\left|L_{uckGrade}-214\right|,215 \le L_{uckGrade}<216:0.893+-0.001\left|L_{uckGrade}-215\right|,216 \le L_{uckGrade}<217:0.892+0\left|L_{uckGrade}-216\right|,217 \le L_{uckGrade}<218:0.892+-0.001\left|L_{uckGrade}-217\right|,218 \le L_{uckGrade}<219:0.891+0\left|L_{uckGrade}-218\right|,219 \le L_{uckGrade}<220:0.891+-0.001\left|L_{uckGrade}-219\right|,220 \le L_{uckGrade}<221:0.89+0\left|L_{uckGrade}-220\right|,221 \le L_{uckGrade}<222:0.89+-0.001\left|L_{uckGrade}-221\right|,222 \le L_{uckGrade}<223:0.889+0\left|L_{uckGrade}-222\right|,223 \le L_{uckGrade}<224:0.889+-0.001\left|L_{uckGrade}-223\right|,224 \le L_{uckGrade}<225:0.888+0\left|L_{uckGrade}-224\right|,225 \le L_{uckGrade}<226:0.888+-0.001\left|L_{uckGrade}-225\right|,226 \le L_{uckGrade}<227:0.887+0\left|L_{uckGrade}-226\right|,227 \le L_{uckGrade}<228:0.887+-0.001\left|L_{uckGrade}-227\right|,228 \le L_{uckGrade}<229:0.886+0\left|L_{uckGrade}-228\right|,229 \le L_{uckGrade}<230:0.886+-0.001\left|L_{uckGrade}-229\right|,230 \le L_{uckGrade}<231:0.885+0\left|L_{uckGrade}-230\right|,231 \le L_{uckGrade}<232:0.885+-0.001\left|L_{uckGrade}-231\right|,232 \le L_{uckGrade}<233:0.884+0\left|L_{uckGrade}-232\right|,233 \le L_{uckGrade}<234:0.884+-0.001\left|L_{uckGrade}-233\right|,234 \le L_{uckGrade}<235:0.883+0\left|L_{uckGrade}-234\right|,235 \le L_{uckGrade}<236:0.883+-0.001\left|L_{uckGrade}-235\right|,236 \le L_{uckGrade}<237:0.882+0\left|L_{uckGrade}-236\right|,237 \le L_{uckGrade}<238:0.882+-0.001\left|L_{uckGrade}-237\right|,238 \le L_{uckGrade}<239:0.881+0\left|L_{uckGrade}-238\right|,239 \le L_{uckGrade}<240:0.881+-0.001\left|L_{uckGrade}-239\right|,240 \le L_{uckGrade}<241:0.88+0\left|L_{uckGrade}-240\right|,241 \le L_{uckGrade}<242:0.88+-0.001\left|L_{uckGrade}-241\right|,242 \le L_{uckGrade}<243:0.879+0\left|L_{uckGrade}-242\right|,243 \le L_{uckGrade}<244:0.879+-0.001\left|L_{uckGrade}-243\right|,244 \le L_{uckGrade}<245:0.878+0\left|L_{uckGrade}-244\right|,245 \le L_{uckGrade}<246:0.878+-0.001\left|L_{uckGrade}-245\right|,246 \le L_{uckGrade}<247:0.877+0\left|L_{uckGrade}-246\right|,247 \le L_{uckGrade}<248:0.877+-0.001\left|L_{uckGrade}-247\right|,248 \le L_{uckGrade}<249:0.876+0\left|L_{uckGrade}-248\right|,249 \le L_{uckGrade}<250:0.876+-0.001\left|L_{uckGrade}-249\right|,250 \le L_{uckGrade}<251:0.875+0\left|L_{uckGrade}-250\right|,251 \le L_{uckGrade}<252:0.875+-0.001\left|L_{uckGrade}-251\right|,252 \le L_{uckGrade}<253:0.874+0\left|L_{uckGrade}-252\right|,253 \le L_{uckGrade}<254:0.874+-0.001\left|L_{uckGrade}-253\right|,254 \le L_{uckGrade}<255:0.873+0\left|L_{uckGrade}-254\right|,255 \le L_{uckGrade}<256:0.873+-0.001\left|L_{uckGrade}-255\right|,256 \le L_{uckGrade}<257:0.872+0\left|L_{uckGrade}-256\right|,257 \le L_{uckGrade}<258:0.872+-0.001\left|L_{uckGrade}-257\right|,258 \le L_{uckGrade}<259:0.871+0\left|L_{uckGrade}-258\right|,259 \le L_{uckGrade}<260:0.871+-0.001\left|L_{uckGrade}-259\right|,260 \le L_{uckGrade}<261:0.87+0\left|L_{uckGrade}-260\right|,261 \le L_{uckGrade}<262:0.87+-0.001\left|L_{uckGrade}-261\right|,262 \le L_{uckGrade}<263:0.869+0\left|L_{uckGrade}-262\right|,263 \le L_{uckGrade}<264:0.869+-0.001\left|L_{uckGrade}-263\right|,264 \le L_{uckGrade}<265:0.868+0\left|L_{uckGrade}-264\right|,265 \le L_{uckGrade}<266:0.868+-0.001\left|L_{uckGrade}-265\right|,266 \le L_{uckGrade}<267:0.867+0\left|L_{uckGrade}-266\right|,267 \le L_{uckGrade}<268:0.867+-0.001\left|L_{uckGrade}-267\right|,268 \le L_{uckGrade}<269:0.866+0\left|L_{uckGrade}-268\right|,269 \le L_{uckGrade}<270:0.866+-0.001\left|L_{uckGrade}-269\right|,270 \le L_{uckGrade}<271:0.865+0\left|L_{uckGrade}-270\right|,271 \le L_{uckGrade}<272:0.865+-0.001\left|L_{uckGrade}-271\right|,272 \le L_{uckGrade}<273:0.864+0\left|L_{uckGrade}-272\right|,273 \le L_{uckGrade}<274:0.864+-0.001\left|L_{uckGrade}-273\right|,274 \le L_{uckGrade}<275:0.863+0\left|L_{uckGrade}-274\right|,275 \le L_{uckGrade}<276:0.863+-0.001\left|L_{uckGrade}-275\right|,276 \le L_{uckGrade}<277:0.862+0\left|L_{uckGrade}-276\right|,277 \le L_{uckGrade}<278:0.862+-0.001\left|L_{uckGrade}-277\right|,278 \le L_{uckGrade}<279:0.861+0\left|L_{uckGrade}-278\right|,279 \le L_{uckGrade}<280:0.861+-0.001\left|L_{uckGrade}-279\right|,280 \le L_{uckGrade}<281:0.86+0\left|L_{uckGrade}-280\right|,281 \le L_{uckGrade}<282:0.86+-0.001\left|L_{uckGrade}-281\right|,282 \le L_{uckGrade}<283:0.859+0\left|L_{uckGrade}-282\right|,283 \le L_{uckGrade}<284:0.859+-0.001\left|L_{uckGrade}-283\right|,284 \le L_{uckGrade}<285:0.858+0\left|L_{uckGrade}-284\right|,285 \le L_{uckGrade}<286:0.858+-0.001\left|L_{uckGrade}-285\right|,286 \le L_{uckGrade}<287:0.857+0\left|L_{uckGrade}-286\right|,287 \le L_{uckGrade}<288:0.857+-0.001\left|L_{uckGrade}-287\right|,288 \le L_{uckGrade}<289:0.856+0\left|L_{uckGrade}-288\right|,289 \le L_{uckGrade}<290:0.856+-0.001\left|L_{uckGrade}-289\right|,290 \le L_{uckGrade}<291:0.855+0\left|L_{uckGrade}-290\right|,291 \le L_{uckGrade}<292:0.855+-0.001\left|L_{uckGrade}-291\right|,292 \le L_{uckGrade}<293:0.854+0\left|L_{uckGrade}-292\right|,293 \le L_{uckGrade}<294:0.854+-0.001\left|L_{uckGrade}-293\right|,294 \le L_{uckGrade}<295:0.853+0\left|L_{uckGrade}-294\right|,295 \le L_{uckGrade}<296:0.853+-0.001\left|L_{uckGrade}-295\right|,296 \le L_{uckGrade}<297:0.852+0\left|L_{uckGrade}-296\right|,297 \le L_{uckGrade}<298:0.852+-0.001\left|L_{uckGrade}-297\right|,298 \le L_{uckGrade}<299:0.851+0\left|L_{uckGrade}-298\right|,299 \le L_{uckGrade}<300:0.851+-0.001\left|L_{uckGrade}-299\right|,300 \le L_{uckGrade}<301:0.85+0\left|L_{uckGrade}-300\right|,301 \le L_{uckGrade}<302:0.85+-0.001\left|L_{uckGrade}-301\right|,302 \le L_{uckGrade}<303:0.849+0\left|L_{uckGrade}-302\right|,303 \le L_{uckGrade}<304:0.849+-0.001\left|L_{uckGrade}-303\right|,304 \le L_{uckGrade}<305:0.848+0\left|L_{uckGrade}-304\right|,305 \le L_{uckGrade}<306:0.848+-0.001\left|L_{uckGrade}-305\right|,306 \le L_{uckGrade}<307:0.847+0\left|L_{uckGrade}-306\right|,307 \le L_{uckGrade}<308:0.847+-0.001\left|L_{uckGrade}-307\right|,308 \le L_{uckGrade}<309:0.846+0\left|L_{uckGrade}-308\right|,309 \le L_{uckGrade}<310:0.846+-0.001\left|L_{uckGrade}-309\right|,310 \le L_{uckGrade}<311:0.845+0\left|L_{uckGrade}-310\right|,311 \le L_{uckGrade}<312:0.845+-0.001\left|L_{uckGrade}-311\right|,312 \le L_{uckGrade}<313:0.844+0\left|L_{uckGrade}-312\right|,313 \le L_{uckGrade}<314:0.844+-0.001\left|L_{uckGrade}-313\right|,314 \le L_{uckGrade}<315:0.843+0\left|L_{uckGrade}-314\right|,315 \le L_{uckGrade}<316:0.843+-0.001\left|L_{uckGrade}-315\right|,316 \le L_{uckGrade}<317:0.842+0\left|L_{uckGrade}-316\right|,317 \le L_{uckGrade}<318:0.842+-0.001\left|L_{uckGrade}-317\right|,318 \le L_{uckGrade}<319:0.841+0\left|L_{uckGrade}-318\right|,319 \le L_{uckGrade}<320:0.841+-0.001\left|L_{uckGrade}-319\right|,320 \le L_{uckGrade}<321:0.84+0\left|L_{uckGrade}-320\right|,321 \le L_{uckGrade}<322:0.84+-0.001\left|L_{uckGrade}-321\right|,322 \le L_{uckGrade}<323:0.839+0\left|L_{uckGrade}-322\right|,323 \le L_{uckGrade}<324:0.839+-0.001\left|L_{uckGrade}-323\right|,324 \le L_{uckGrade}<325:0.838+0\left|L_{uckGrade}-324\right|,325 \le L_{uckGrade}<326:0.838+-0.001\left|L_{uckGrade}-325\right|,326 \le L_{uckGrade}<327:0.837+0\left|L_{uckGrade}-326\right|,327 \le L_{uckGrade}<328:0.837+-0.001\left|L_{uckGrade}-327\right|,328 \le L_{uckGrade}<329:0.836+0\left|L_{uckGrade}-328\right|,329 \le L_{uckGrade}<330:0.836+-0.001\left|L_{uckGrade}-329\right|,330 \le L_{uckGrade}<331:0.835+0\left|L_{uckGrade}-330\right|,331 \le L_{uckGrade}<332:0.835+-0.001\left|L_{uckGrade}-331\right|,332 \le L_{uckGrade}<333:0.834+0\left|L_{uckGrade}-332\right|,333 \le L_{uckGrade}<334:0.834+-0.001\left|L_{uckGrade}-333\right|,334 \le L_{uckGrade}<335:0.833+0\left|L_{uckGrade}-334\right|,335 \le L_{uckGrade}<336:0.833+-0.001\left|L_{uckGrade}-335\right|,336 \le L_{uckGrade}<337:0.832+0\left|L_{uckGrade}-336\right|,337 \le L_{uckGrade}<338:0.832+-0.001\left|L_{uckGrade}-337\right|,338 \le L_{uckGrade}<339:0.831+0\left|L_{uckGrade}-338\right|,339 \le L_{uckGrade}<340:0.831+-0.001\left|L_{uckGrade}-339\right|,340 \le L_{uckGrade}<341:0.83+0\left|L_{uckGrade}-340\right|,341 \le L_{uckGrade}<342:0.83+-0.001\left|L_{uckGrade}-341\right|,342 \le L_{uckGrade}<343:0.829+0\left|L_{uckGrade}-342\right|,343 \le L_{uckGrade}<344:0.829+-0.001\left|L_{uckGrade}-343\right|,344 \le L_{uckGrade}<345:0.828+0\left|L_{uckGrade}-344\right|,345 \le L_{uckGrade}<346:0.828+-0.001\left|L_{uckGrade}-345\right|,346 \le L_{uckGrade}<347:0.827+0\left|L_{uckGrade}-346\right|,347 \le L_{uckGrade}<348:0.827+-0.001\left|L_{uckGrade}-347\right|,348 \le L_{uckGrade}<349:0.826+0\left|L_{uckGrade}-348\right|,349 \le L_{uckGrade}<350:0.826+-0.001\left|L_{uckGrade}-349\right|,350 \le L_{uckGrade}<351:0.825+0\left|L_{uckGrade}-350\right|,351 \le L_{uckGrade}<352:0.825+-0.001\left|L_{uckGrade}-351\right|,352 \le L_{uckGrade}<353:0.824+0\left|L_{uckGrade}-352\right|,353 \le L_{uckGrade}<354:0.824+-0.001\left|L_{uckGrade}-353\right|,354 \le L_{uckGrade}<355:0.823+0\left|L_{uckGrade}-354\right|,355 \le L_{uckGrade}<356:0.823+-0.001\left|L_{uckGrade}-355\right|,356 \le L_{uckGrade}<357:0.822+0\left|L_{uckGrade}-356\right|,357 \le L_{uckGrade}<358:0.822+-0.001\left|L_{uckGrade}-357\right|,358 \le L_{uckGrade}<359:0.821+0\left|L_{uckGrade}-358\right|,359 \le L_{uckGrade}<360:0.821+-0.001\left|L_{uckGrade}-359\right|,360 \le L_{uckGrade}<361:0.82+0\left|L_{uckGrade}-360\right|,361 \le L_{uckGrade}<362:0.82+-0.001\left|L_{uckGrade}-361\right|,362 \le L_{uckGrade}<363:0.819+0\left|L_{uckGrade}-362\right|,363 \le L_{uckGrade}<364:0.819+-0.001\left|L_{uckGrade}-363\right|,364 \le L_{uckGrade}<365:0.818+0\left|L_{uckGrade}-364\right|,365 \le L_{uckGrade}<366:0.818+-0.001\left|L_{uckGrade}-365\right|,366 \le L_{uckGrade}<367:0.817+0\left|L_{uckGrade}-366\right|,367 \le L_{uckGrade}<368:0.817+-0.001\left|L_{uckGrade}-367\right|,368 \le L_{uckGrade}<369:0.816+0\left|L_{uckGrade}-368\right|,369 \le L_{uckGrade}<370:0.816+-0.001\left|L_{uckGrade}-369\right|,370 \le L_{uckGrade}<371:0.815+0\left|L_{uckGrade}-370\right|,371 \le L_{uckGrade}<372:0.815+-0.001\left|L_{uckGrade}-371\right|,372 \le L_{uckGrade}<373:0.814+0\left|L_{uckGrade}-372\right|,373 \le L_{uckGrade}<374:0.814+-0.001\left|L_{uckGrade}-373\right|,374 \le L_{uckGrade}<375:0.813+0\left|L_{uckGrade}-374\right|,375 \le L_{uckGrade}<376:0.813+-0.001\left|L_{uckGrade}-375\right|,376 \le L_{uckGrade}<377:0.812+0\left|L_{uckGrade}-376\right|,377 \le L_{uckGrade}<378:0.812+-0.001\left|L_{uckGrade}-377\right|,378 \le L_{uckGrade}<379:0.811+0\left|L_{uckGrade}-378\right|,379 \le L_{uckGrade}<380:0.811+-0.001\left|L_{uckGrade}-379\right|,380 \le L_{uckGrade}<381:0.81+0\left|L_{uckGrade}-380\right|,381 \le L_{uckGrade}<382:0.81+-0.001\left|L_{uckGrade}-381\right|,382 \le L_{uckGrade}<383:0.809+0\left|L_{uckGrade}-382\right|,383 \le L_{uckGrade}<384:0.809+-0.001\left|L_{uckGrade}-383\right|,384 \le L_{uckGrade}<385:0.808+0\left|L_{uckGrade}-384\right|,385 \le L_{uckGrade}<386:0.808+-0.001\left|L_{uckGrade}-385\right|,386 \le L_{uckGrade}<387:0.807+0\left|L_{uckGrade}-386\right|,387 \le L_{uckGrade}<388:0.807+-0.001\left|L_{uckGrade}-387\right|,388 \le L_{uckGrade}<389:0.806+0\left|L_{uckGrade}-388\right|,389 \le L_{uckGrade}<390:0.806+-0.001\left|L_{uckGrade}-389\right|,390 \le L_{uckGrade}<391:0.805+0\left|L_{uckGrade}-390\right|,391 \le L_{uckGrade}<392:0.805+-0.001\left|L_{uckGrade}-391\right|,392 \le L_{uckGrade}<393:0.804+0\left|L_{uckGrade}-392\right|,393 \le L_{uckGrade}<394:0.804+-0.001\left|L_{uckGrade}-393\right|,394 \le L_{uckGrade}<395:0.803+0\left|L_{uckGrade}-394\right|,395 \le L_{uckGrade}<396:0.803+-0.001\left|L_{uckGrade}-395\right|,396 \le L_{uckGrade}<397:0.802+0\left|L_{uckGrade}-396\right|,397 \le L_{uckGrade}<398:0.802+-0.001\left|L_{uckGrade}-397\right|,398 \le L_{uckGrade}<399:0.801+0\left|L_{uckGrade}-398\right|,399 \le L_{uckGrade}<400:0.801+-0.001\left|L_{uckGrade}-399\right|,400 \le L_{uckGrade}<401:0.8+0\left|L_{uckGrade}-400\right|,401 \le L_{uckGrade}<402:0.8+-0.001\left|L_{uckGrade}-401\right|,402 \le L_{uckGrade}<403:0.799+0\left|L_{uckGrade}-402\right|,403 \le L_{uckGrade}<404:0.799+-0.001\left|L_{uckGrade}-403\right|,404 \le L_{uckGrade}<405:0.798+0\left|L_{uckGrade}-404\right|,405 \le L_{uckGrade}<406:0.798+-0.001\left|L_{uckGrade}-405\right|,406 \le L_{uckGrade}<407:0.797+0\left|L_{uckGrade}-406\right|,407 \le L_{uckGrade}<408:0.797+-0.001\left|L_{uckGrade}-407\right|,408 \le L_{uckGrade}<409:0.796+0\left|L_{uckGrade}-408\right|,409 \le L_{uckGrade}<410:0.796+-0.001\left|L_{uckGrade}-409\right|,410 \le L_{uckGrade}<411:0.795+0\left|L_{uckGrade}-410\right|,411 \le L_{uckGrade}<412:0.795+-0.001\left|L_{uckGrade}-411\right|,412 \le L_{uckGrade}<413:0.794+0\left|L_{uckGrade}-412\right|,413 \le L_{uckGrade}<414:0.794+-0.001\left|L_{uckGrade}-413\right|,414 \le L_{uckGrade}<415:0.793+0\left|L_{uckGrade}-414\right|,415 \le L_{uckGrade}<416:0.793+-0.001\left|L_{uckGrade}-415\right|,416 \le L_{uckGrade}<417:0.792+0\left|L_{uckGrade}-416\right|,417 \le L_{uckGrade}<418:0.792+-0.001\left|L_{uckGrade}-417\right|,418 \le L_{uckGrade}<419:0.791+0\left|L_{uckGrade}-418\right|,419 \le L_{uckGrade}<420:0.791+-0.001\left|L_{uckGrade}-419\right|,420 \le L_{uckGrade}<421:0.79+0\left|L_{uckGrade}-420\right|,421 \le L_{uckGrade}<422:0.79+-0.001\left|L_{uckGrade}-421\right|,422 \le L_{uckGrade}<423:0.789+0\left|L_{uckGrade}-422\right|,423 \le L_{uckGrade}<424:0.789+-0.001\left|L_{uckGrade}-423\right|,424 \le L_{uckGrade}<425:0.788+0\left|L_{uckGrade}-424\right|,425 \le L_{uckGrade}<426:0.788+-0.001\left|L_{uckGrade}-425\right|,426 \le L_{uckGrade}<427:0.787+0\left|L_{uckGrade}-426\right|,427 \le L_{uckGrade}<428:0.787+-0.001\left|L_{uckGrade}-427\right|,428 \le L_{uckGrade}<429:0.786+0\left|L_{uckGrade}-428\right|,429 \le L_{uckGrade}<430:0.786+-0.001\left|L_{uckGrade}-429\right|,430 \le L_{uckGrade}<431:0.785+0\left|L_{uckGrade}-430\right|,431 \le L_{uckGrade}<432:0.785+-0.001\left|L_{uckGrade}-431\right|,432 \le L_{uckGrade}<433:0.784+0\left|L_{uckGrade}-432\right|,433 \le L_{uckGrade}<434:0.784+-0.001\left|L_{uckGrade}-433\right|,434 \le L_{uckGrade}<435:0.783+0\left|L_{uckGrade}-434\right|,435 \le L_{uckGrade}<436:0.783+-0.001\left|L_{uckGrade}-435\right|,436 \le L_{uckGrade}<437:0.782+0\left|L_{uckGrade}-436\right|,437 \le L_{uckGrade}<438:0.782+-0.001\left|L_{uckGrade}-437\right|,438 \le L_{uckGrade}<439:0.781+0\left|L_{uckGrade}-438\right|,439 \le L_{uckGrade}<440:0.781+-0.001\left|L_{uckGrade}-439\right|,440 \le L_{uckGrade}<441:0.78+0\left|L_{uckGrade}-440\right|,441 \le L_{uckGrade}<442:0.78+-0.001\left|L_{uckGrade}-441\right|,442 \le L_{uckGrade}<443:0.779+0\left|L_{uckGrade}-442\right|,443 \le L_{uckGrade}<444:0.779+-0.001\left|L_{uckGrade}-443\right|,444 \le L_{uckGrade}<445:0.778+0\left|L_{uckGrade}-444\right|,445 \le L_{uckGrade}<446:0.778+-0.001\left|L_{uckGrade}-445\right|,446 \le L_{uckGrade}<447:0.777+0\left|L_{uckGrade}-446\right|,447 \le L_{uckGrade}<448:0.777+-0.001\left|L_{uckGrade}-447\right|,448 \le L_{uckGrade}<449:0.776+0\left|L_{uckGrade}-448\right|,449 \le L_{uckGrade}<450:0.776+-0.001\left|L_{uckGrade}-449\right|,450 \le L_{uckGrade}<451:0.775+0\left|L_{uckGrade}-450\right|,451 \le L_{uckGrade}<452:0.775+-0.001\left|L_{uckGrade}-451\right|,452 \le L_{uckGrade}<453:0.774+0\left|L_{uckGrade}-452\right|,453 \le L_{uckGrade}<454:0.774+-0.001\left|L_{uckGrade}-453\right|,454 \le L_{uckGrade}<455:0.773+0\left|L_{uckGrade}-454\right|,455 \le L_{uckGrade}<456:0.773+-0.001\left|L_{uckGrade}-455\right|,456 \le L_{uckGrade}<457:0.772+0\left|L_{uckGrade}-456\right|,457 \le L_{uckGrade}<458:0.772+-0.001\left|L_{uckGrade}-457\right|,458 \le L_{uckGrade}<459:0.771+0\left|L_{uckGrade}-458\right|,459 \le L_{uckGrade}<460:0.771+-0.001\left|L_{uckGrade}-459\right|,460 \le L_{uckGrade}<461:0.77+0\left|L_{uckGrade}-460\right|,461 \le L_{uckGrade}<462:0.77+-0.001\left|L_{uckGrade}-461\right|,462 \le L_{uckGrade}<463:0.769+0\left|L_{uckGrade}-462\right|,463 \le L_{uckGrade}<464:0.769+-0.001\left|L_{uckGrade}-463\right|,464 \le L_{uckGrade}<465:0.768+0\left|L_{uckGrade}-464\right|,465 \le L_{uckGrade}<466:0.768+-0.001\left|L_{uckGrade}-465\right|,466 \le L_{uckGrade}<467:0.767+0\left|L_{uckGrade}-466\right|,467 \le L_{uckGrade}<468:0.767+-0.001\left|L_{uckGrade}-467\right|,468 \le L_{uckGrade}<469:0.766+0\left|L_{uckGrade}-468\right|,469 \le L_{uckGrade}<470:0.766+-0.001\left|L_{uckGrade}-469\right|,470 \le L_{uckGrade}<471:0.765+0\left|L_{uckGrade}-470\right|,471 \le L_{uckGrade}<472:0.765+-0.001\left|L_{uckGrade}-471\right|,472 \le L_{uckGrade}<473:0.764+0\left|L_{uckGrade}-472\right|,473 \le L_{uckGrade}<474:0.764+-0.001\left|L_{uckGrade}-473\right|,474 \le L_{uckGrade}<475:0.763+0\left|L_{uckGrade}-474\right|,475 \le L_{uckGrade}<476:0.763+-0.001\left|L_{uckGrade}-475\right|,476 \le L_{uckGrade}<477:0.762+0\left|L_{uckGrade}-476\right|,477 \le L_{uckGrade}<478:0.762+-0.001\left|L_{uckGrade}-477\right|,478 \le L_{uckGrade}<479:0.761+0\left|L_{uckGrade}-478\right|,479 \le L_{uckGrade}<480:0.761+-0.001\left|L_{uckGrade}-479\right|,480 \le L_{uckGrade}<481:0.76+0\left|L_{uckGrade}-480\right|,481 \le L_{uckGrade}<482:0.76+-0.001\left|L_{uckGrade}-481\right|,482 \le L_{uckGrade}<483:0.759+0\left|L_{uckGrade}-482\right|,483 \le L_{uckGrade}<484:0.759+-0.001\left|L_{uckGrade}-483\right|,484 \le L_{uckGrade}<485:0.758+0\left|L_{uckGrade}-484\right|,485 \le L_{uckGrade}<486:0.758+-0.001\left|L_{uckGrade}-485\right|,486 \le L_{uckGrade}<487:0.757+0\left|L_{uckGrade}-486\right|,487 \le L_{uckGrade}<488:0.757+-0.001\left|L_{uckGrade}-487\right|,488 \le L_{uckGrade}<489:0.756+0\left|L_{uckGrade}-488\right|,489 \le L_{uckGrade}<490:0.756+-0.001\left|L_{uckGrade}-489\right|,490 \le L_{uckGrade}<491:0.755+0\left|L_{uckGrade}-490\right|,491 \le L_{uckGrade}<492:0.755+-0.001\left|L_{uckGrade}-491\right|,492 \le L_{uckGrade}<493:0.754+0\left|L_{uckGrade}-492\right|,493 \le L_{uckGrade}<494:0.754+-0.001\left|L_{uckGrade}-493\right|,494 \le L_{uckGrade}<495:0.753+0\left|L_{uckGrade}-494\right|,495 \le L_{uckGrade}<496:0.753+-0.001\left|L_{uckGrade}-495\right|,496 \le L_{uckGrade}<497:0.752+0\left|L_{uckGrade}-496\right|,497 \le L_{uckGrade}<498:0.752+-0.001\left|L_{uckGrade}-497\right|,498 \le L_{uckGrade}<499:0.751+0\left|L_{uckGrade}-498\right|,499 \le L_{uckGrade}<500:0.751+-0.001\left|L_{uckGrade}-499\right|\right\}

See Example for how to use.


LaTeX Formula

Can be pasted into Desmos or other LaTeX editors for quick use of the equation.

Triple click to select all. Note: Some browsers will add an extra return carriage (line end) after the formula. Remove it before pasting for best results.

L_{uckGrade03}(L_{uckGrade})=\left\{0 \le L_{uckGrade}<500:1+0\left|L_{uckGrade}-0\right|\right\}

See Example for how to use.


LaTeX Formula

Can be pasted into Desmos or other LaTeX editors for quick use of the equation.

Triple click to select all. Note: Some browsers will add an extra return carriage (line end) after the formula. Remove it before pasting for best results.

L_{uckGrade04}(L_{uckGrade})=\left\{0 \le L_{uckGrade}<7:1+0.01\left|L_{uckGrade}-0\right|,7 \le L_{uckGrade}<8:1.07+0.009\left|L_{uckGrade}-7\right|,8 \le L_{uckGrade}<12:1.079+0.01\left|L_{uckGrade}-8\right|,12 \le L_{uckGrade}<13:1.119+0.009\left|L_{uckGrade}-12\right|,13 \le L_{uckGrade}<16:1.128+0.01\left|L_{uckGrade}-13\right|,16 \le L_{uckGrade}<17:1.158+0.009\left|L_{uckGrade}-16\right|,17 \le L_{uckGrade}<19:1.167+0.01\left|L_{uckGrade}-17\right|,19 \le L_{uckGrade}<20:1.187+0.009\left|L_{uckGrade}-19\right|,20 \le L_{uckGrade}<21:1.196+0.01\left|L_{uckGrade}-20\right|,21 \le L_{uckGrade}<22:1.206+0.009\left|L_{uckGrade}-21\right|,22 \le L_{uckGrade}<23:1.215+0.01\left|L_{uckGrade}-22\right|,23 \le L_{uckGrade}<24:1.225+0.009\left|L_{uckGrade}-23\right|,24 \le L_{uckGrade}<26:1.234+0.01\left|L_{uckGrade}-24\right|,26 \le L_{uckGrade}<28:1.254+0.009\left|L_{uckGrade}-26\right|,28 \le L_{uckGrade}<29:1.272+0.01\left|L_{uckGrade}-28\right|,29 \le L_{uckGrade}<30:1.282+0.009\left|L_{uckGrade}-29\right|,30 \le L_{uckGrade}<31:1.291+0.01\left|L_{uckGrade}-30\right|,31 \le L_{uckGrade}<33:1.301+0.009\left|L_{uckGrade}-31\right|,33 \le L_{uckGrade}<34:1.319+0.01\left|L_{uckGrade}-33\right|,34 \le L_{uckGrade}<36:1.329+0.009\left|L_{uckGrade}-34\right|,36 \le L_{uckGrade}<37:1.347+0.01\left|L_{uckGrade}-36\right|,37 \le L_{uckGrade}<40:1.357+0.009\left|L_{uckGrade}-37\right|,40 \le L_{uckGrade}<41:1.384+0.01\left|L_{uckGrade}-40\right|,41 \le L_{uckGrade}<49:1.394+0.009\left|L_{uckGrade}-41\right|,49 \le L_{uckGrade}<50:1.466+0.01\left|L_{uckGrade}-49\right|,50 \le L_{uckGrade}<51:1.476+0.009\left|L_{uckGrade}-50\right|,51 \le L_{uckGrade}<52:1.485+0.008\left|L_{uckGrade}-51\right|,52 \le L_{uckGrade}<60:1.493+0.009\left|L_{uckGrade}-52\right|,60 \le L_{uckGrade}<61:1.565+0.008\left|L_{uckGrade}-60\right|,61 \le L_{uckGrade}<64:1.573+0.009\left|L_{uckGrade}-61\right|,64 \le L_{uckGrade}<65:1.6+0.008\left|L_{uckGrade}-64\right|,65 \le L_{uckGrade}<67:1.608+0.009\left|L_{uckGrade}-65\right|,67 \le L_{uckGrade}<68:1.626+0.008\left|L_{uckGrade}-67\right|,68 \le L_{uckGrade}<70:1.634+0.009\left|L_{uckGrade}-68\right|,70 \le L_{uckGrade}<71:1.652+0.008\left|L_{uckGrade}-70\right|,71 \le L_{uckGrade}<72:1.66+0.009\left|L_{uckGrade}-71\right|,72 \le L_{uckGrade}<73:1.669+0.008\left|L_{uckGrade}-72\right|,73 \le L_{uckGrade}<75:1.677+0.009\left|L_{uckGrade}-73\right|,75 \le L_{uckGrade}<77:1.695+0.008\left|L_{uckGrade}-75\right|,77 \le L_{uckGrade}<78:1.711+0.009\left|L_{uckGrade}-77\right|,78 \le L_{uckGrade}<79:1.72+0.008\left|L_{uckGrade}-78\right|,79 \le L_{uckGrade}<80:1.728+0.009\left|L_{uckGrade}-79\right|,80 \le L_{uckGrade}<81:1.737+0.008\left|L_{uckGrade}-80\right|,81 \le L_{uckGrade}<82:1.745+0.009\left|L_{uckGrade}-81\right|,82 \le L_{uckGrade}<84:1.754+0.008\left|L_{uckGrade}-82\right|,84 \le L_{uckGrade}<85:1.77+0.009\left|L_{uckGrade}-84\right|,85 \le L_{uckGrade}<88:1.779+0.008\left|L_{uckGrade}-85\right|,88 \le L_{uckGrade}<89:1.803+0.009\left|L_{uckGrade}-88\right|,89 \le L_{uckGrade}<93:1.812+0.008\left|L_{uckGrade}-89\right|,93 \le L_{uckGrade}<94:1.844+0.009\left|L_{uckGrade}-93\right|,94 \le L_{uckGrade}<107:1.853+0.008\left|L_{uckGrade}-94\right|,107 \le L_{uckGrade}<108:1.957+0.007\left|L_{uckGrade}-107\right|,108 \le L_{uckGrade}<112:1.964+0.008\left|L_{uckGrade}-108\right|,112 \le L_{uckGrade}<113:1.996+0.007\left|L_{uckGrade}-112\right|,113 \le L_{uckGrade}<116:2.003+0.008\left|L_{uckGrade}-113\right|,116 \le L_{uckGrade}<117:2.027+0.007\left|L_{uckGrade}-116\right|,117 \le L_{uckGrade}<119:2.034+0.008\left|L_{uckGrade}-117\right|,119 \le L_{uckGrade}<120:2.05+0.007\left|L_{uckGrade}-119\right|,120 \le L_{uckGrade}<121:2.057+0.008\left|L_{uckGrade}-120\right|,121 \le L_{uckGrade}<122:2.065+0.007\left|L_{uckGrade}-121\right|,122 \le L_{uckGrade}<123:2.072+0.008\left|L_{uckGrade}-122\right|,123 \le L_{uckGrade}<124:2.08+0.007\left|L_{uckGrade}-123\right|,124 \le L_{uckGrade}<126:2.087+0.008\left|L_{uckGrade}-124\right|,126 \le L_{uckGrade}<128:2.103+0.007\left|L_{uckGrade}-126\right|,128 \le L_{uckGrade}<129:2.117+0.008\left|L_{uckGrade}-128\right|,129 \le L_{uckGrade}<130:2.125+0.007\left|L_{uckGrade}-129\right|,130 \le L_{uckGrade}<131:2.132+0.008\left|L_{uckGrade}-130\right|,131 \le L_{uckGrade}<133:2.14+0.007\left|L_{uckGrade}-131\right|,133 \le L_{uckGrade}<134:2.154+0.008\left|L_{uckGrade}-133\right|,134 \le L_{uckGrade}<136:2.162+0.007\left|L_{uckGrade}-134\right|,136 \le L_{uckGrade}<137:2.176+0.008\left|L_{uckGrade}-136\right|,137 \le L_{uckGrade}<140:2.184+0.007\left|L_{uckGrade}-137\right|,140 \le L_{uckGrade}<141:2.205+0.008\left|L_{uckGrade}-140\right|,141 \le L_{uckGrade}<149:2.213+0.007\left|L_{uckGrade}-141\right|,149 \le L_{uckGrade}<150:2.269+0.008\left|L_{uckGrade}-149\right|,150 \le L_{uckGrade}<151:2.277+0.007\left|L_{uckGrade}-150\right|,151 \le L_{uckGrade}<152:2.284+0.006\left|L_{uckGrade}-151\right|,152 \le L_{uckGrade}<160:2.29+0.007\left|L_{uckGrade}-152\right|,160 \le L_{uckGrade}<161:2.346+0.006\left|L_{uckGrade}-160\right|,161 \le L_{uckGrade}<164:2.352+0.007\left|L_{uckGrade}-161\right|,164 \le L_{uckGrade}<165:2.373+0.006\left|L_{uckGrade}-164\right|,165 \le L_{uckGrade}<167:2.379+0.007\left|L_{uckGrade}-165\right|,167 \le L_{uckGrade}<168:2.393+0.006\left|L_{uckGrade}-167\right|,168 \le L_{uckGrade}<170:2.399+0.007\left|L_{uckGrade}-168\right|,170 \le L_{uckGrade}<171:2.413+0.006\left|L_{uckGrade}-170\right|,171 \le L_{uckGrade}<172:2.419+0.007\left|L_{uckGrade}-171\right|,172 \le L_{uckGrade}<173:2.426+0.006\left|L_{uckGrade}-172\right|,173 \le L_{uckGrade}<175:2.432+0.007\left|L_{uckGrade}-173\right|,175 \le L_{uckGrade}<177:2.446+0.006\left|L_{uckGrade}-175\right|,177 \le L_{uckGrade}<178:2.458+0.007\left|L_{uckGrade}-177\right|,178 \le L_{uckGrade}<179:2.465+0.006\left|L_{uckGrade}-178\right|,179 \le L_{uckGrade}<180:2.471+0.007\left|L_{uckGrade}-179\right|,180 \le L_{uckGrade}<181:2.478+0.006\left|L_{uckGrade}-180\right|,181 \le L_{uckGrade}<182:2.484+0.007\left|L_{uckGrade}-181\right|,182 \le L_{uckGrade}<184:2.491+0.006\left|L_{uckGrade}-182\right|,184 \le L_{uckGrade}<185:2.503+0.007\left|L_{uckGrade}-184\right|,185 \le L_{uckGrade}<188:2.51+0.006\left|L_{uckGrade}-185\right|,188 \le L_{uckGrade}<189:2.528+0.007\left|L_{uckGrade}-188\right|,189 \le L_{uckGrade}<193:2.535+0.006\left|L_{uckGrade}-189\right|,193 \le L_{uckGrade}<194:2.559+0.007\left|L_{uckGrade}-193\right|,194 \le L_{uckGrade}<207:2.566+0.006\left|L_{uckGrade}-194\right|,207 \le L_{uckGrade}<208:2.644+0.005\left|L_{uckGrade}-207\right|,208 \le L_{uckGrade}<212:2.649+0.006\left|L_{uckGrade}-208\right|,212 \le L_{uckGrade}<213:2.673+0.005\left|L_{uckGrade}-212\right|,213 \le L_{uckGrade}<216:2.678+0.006\left|L_{uckGrade}-213\right|,216 \le L_{uckGrade}<217:2.696+0.005\left|L_{uckGrade}-216\right|,217 \le L_{uckGrade}<219:2.701+0.006\left|L_{uckGrade}-217\right|,219 \le L_{uckGrade}<220:2.713+0.005\left|L_{uckGrade}-219\right|,220 \le L_{uckGrade}<221:2.718+0.006\left|L_{uckGrade}-220\right|,221 \le L_{uckGrade}<222:2.724+0.005\left|L_{uckGrade}-221\right|,222 \le L_{uckGrade}<223:2.729+0.006\left|L_{uckGrade}-222\right|,223 \le L_{uckGrade}<224:2.735+0.005\left|L_{uckGrade}-223\right|,224 \le L_{uckGrade}<226:2.74+0.006\left|L_{uckGrade}-224\right|,226 \le L_{uckGrade}<228:2.752+0.005\left|L_{uckGrade}-226\right|,228 \le L_{uckGrade}<229:2.762+0.006\left|L_{uckGrade}-228\right|,229 \le L_{uckGrade}<230:2.768+0.005\left|L_{uckGrade}-229\right|,230 \le L_{uckGrade}<231:2.773+0.006\left|L_{uckGrade}-230\right|,231 \le L_{uckGrade}<233:2.779+0.005\left|L_{uckGrade}-231\right|,233 \le L_{uckGrade}<234:2.789+0.006\left|L_{uckGrade}-233\right|,234 \le L_{uckGrade}<236:2.795+0.005\left|L_{uckGrade}-234\right|,236 \le L_{uckGrade}<237:2.805+0.006\left|L_{uckGrade}-236\right|,237 \le L_{uckGrade}<240:2.811+0.005\left|L_{uckGrade}-237\right|,240 \le L_{uckGrade}<241:2.826+0.006\left|L_{uckGrade}-240\right|,241 \le L_{uckGrade}<249:2.832+0.005\left|L_{uckGrade}-241\right|,249 \le L_{uckGrade}<250:2.872+0.006\left|L_{uckGrade}-249\right|,250 \le L_{uckGrade}<251:2.878+0.005\left|L_{uckGrade}-250\right|,251 \le L_{uckGrade}<252:2.883+0.004\left|L_{uckGrade}-251\right|,252 \le L_{uckGrade}<260:2.887+0.005\left|L_{uckGrade}-252\right|,260 \le L_{uckGrade}<261:2.927+0.004\left|L_{uckGrade}-260\right|,261 \le L_{uckGrade}<264:2.931+0.005\left|L_{uckGrade}-261\right|,264 \le L_{uckGrade}<265:2.946+0.004\left|L_{uckGrade}-264\right|,265 \le L_{uckGrade}<267:2.95+0.005\left|L_{uckGrade}-265\right|,267 \le L_{uckGrade}<268:2.96+0.004\left|L_{uckGrade}-267\right|,268 \le L_{uckGrade}<270:2.964+0.005\left|L_{uckGrade}-268\right|,270 \le L_{uckGrade}<271:2.974+0.004\left|L_{uckGrade}-270\right|,271 \le L_{uckGrade}<272:2.978+0.005\left|L_{uckGrade}-271\right|,272 \le L_{uckGrade}<273:2.983+0.004\left|L_{uckGrade}-272\right|,273 \le L_{uckGrade}<275:2.987+0.005\left|L_{uckGrade}-273\right|,275 \le L_{uckGrade}<277:2.997+0.004\left|L_{uckGrade}-275\right|,277 \le L_{uckGrade}<278:3.005+0.005\left|L_{uckGrade}-277\right|,278 \le L_{uckGrade}<279:3.01+0.004\left|L_{uckGrade}-278\right|,279 \le L_{uckGrade}<280:3.014+0.005\left|L_{uckGrade}-279\right|,280 \le L_{uckGrade}<281:3.019+0.004\left|L_{uckGrade}-280\right|,281 \le L_{uckGrade}<282:3.023+0.005\left|L_{uckGrade}-281\right|,282 \le L_{uckGrade}<284:3.028+0.004\left|L_{uckGrade}-282\right|,284 \le L_{uckGrade}<285:3.036+0.005\left|L_{uckGrade}-284\right|,285 \le L_{uckGrade}<288:3.041+0.004\left|L_{uckGrade}-285\right|,288 \le L_{uckGrade}<289:3.053+0.005\left|L_{uckGrade}-288\right|,289 \le L_{uckGrade}<293:3.058+0.004\left|L_{uckGrade}-289\right|,293 \le L_{uckGrade}<294:3.074+0.005\left|L_{uckGrade}-293\right|,294 \le L_{uckGrade}<307:3.079+0.004\left|L_{uckGrade}-294\right|,307 \le L_{uckGrade}<308:3.131+0.003\left|L_{uckGrade}-307\right|,308 \le L_{uckGrade}<312:3.134+0.004\left|L_{uckGrade}-308\right|,312 \le L_{uckGrade}<313:3.15+0.003\left|L_{uckGrade}-312\right|,313 \le L_{uckGrade}<316:3.153+0.004\left|L_{uckGrade}-313\right|,316 \le L_{uckGrade}<317:3.165+0.003\left|L_{uckGrade}-316\right|,317 \le L_{uckGrade}<319:3.168+0.004\left|L_{uckGrade}-317\right|,319 \le L_{uckGrade}<320:3.176+0.003\left|L_{uckGrade}-319\right|,320 \le L_{uckGrade}<321:3.179+0.004\left|L_{uckGrade}-320\right|,321 \le L_{uckGrade}<322:3.183+0.003\left|L_{uckGrade}-321\right|,322 \le L_{uckGrade}<323:3.186+0.004\left|L_{uckGrade}-322\right|,323 \le L_{uckGrade}<324:3.19+0.003\left|L_{uckGrade}-323\right|,324 \le L_{uckGrade}<326:3.193+0.004\left|L_{uckGrade}-324\right|,326 \le L_{uckGrade}<328:3.201+0.003\left|L_{uckGrade}-326\right|,328 \le L_{uckGrade}<329:3.207+0.004\left|L_{uckGrade}-328\right|,329 \le L_{uckGrade}<330:3.211+0.003\left|L_{uckGrade}-329\right|,330 \le L_{uckGrade}<331:3.214+0.004\left|L_{uckGrade}-330\right|,331 \le L_{uckGrade}<333:3.218+0.003\left|L_{uckGrade}-331\right|,333 \le L_{uckGrade}<334:3.224+0.004\left|L_{uckGrade}-333\right|,334 \le L_{uckGrade}<336:3.228+0.003\left|L_{uckGrade}-334\right|,336 \le L_{uckGrade}<337:3.234+0.004\left|L_{uckGrade}-336\right|,337 \le L_{uckGrade}<340:3.238+0.003\left|L_{uckGrade}-337\right|,340 \le L_{uckGrade}<341:3.247+0.004\left|L_{uckGrade}-340\right|,341 \le L_{uckGrade}<349:3.251+0.003\left|L_{uckGrade}-341\right|,349 \le L_{uckGrade}<350:3.275+0.004\left|L_{uckGrade}-349\right|,350 \le L_{uckGrade}<351:3.279+0.003\left|L_{uckGrade}-350\right|,351 \le L_{uckGrade}<352:3.282+0.002\left|L_{uckGrade}-351\right|,352 \le L_{uckGrade}<360:3.284+0.003\left|L_{uckGrade}-352\right|,360 \le L_{uckGrade}<361:3.308+0.002\left|L_{uckGrade}-360\right|,361 \le L_{uckGrade}<364:3.31+0.003\left|L_{uckGrade}-361\right|,364 \le L_{uckGrade}<365:3.319+0.002\left|L_{uckGrade}-364\right|,365 \le L_{uckGrade}<367:3.321+0.003\left|L_{uckGrade}-365\right|,367 \le L_{uckGrade}<368:3.327+0.002\left|L_{uckGrade}-367\right|,368 \le L_{uckGrade}<370:3.329+0.003\left|L_{uckGrade}-368\right|,370 \le L_{uckGrade}<371:3.335+0.002\left|L_{uckGrade}-370\right|,371 \le L_{uckGrade}<372:3.337+0.003\left|L_{uckGrade}-371\right|,372 \le L_{uckGrade}<373:3.34+0.002\left|L_{uckGrade}-372\right|,373 \le L_{uckGrade}<375:3.342+0.003\left|L_{uckGrade}-373\right|,375 \le L_{uckGrade}<377:3.348+0.002\left|L_{uckGrade}-375\right|,377 \le L_{uckGrade}<378:3.352+0.003\left|L_{uckGrade}-377\right|,378 \le L_{uckGrade}<379:3.355+0.002\left|L_{uckGrade}-378\right|,379 \le L_{uckGrade}<380:3.357+0.003\left|L_{uckGrade}-379\right|,380 \le L_{uckGrade}<381:3.36+0.002\left|L_{uckGrade}-380\right|,381 \le L_{uckGrade}<382:3.362+0.003\left|L_{uckGrade}-381\right|,382 \le L_{uckGrade}<384:3.365+0.002\left|L_{uckGrade}-382\right|,384 \le L_{uckGrade}<385:3.369+0.003\left|L_{uckGrade}-384\right|,385 \le L_{uckGrade}<388:3.372+0.002\left|L_{uckGrade}-385\right|,388 \le L_{uckGrade}<389:3.378+0.003\left|L_{uckGrade}-388\right|,389 \le L_{uckGrade}<393:3.381+0.002\left|L_{uckGrade}-389\right|,393 \le L_{uckGrade}<394:3.389+0.003\left|L_{uckGrade}-393\right|,394 \le L_{uckGrade}<407:3.392+0.002\left|L_{uckGrade}-394\right|,407 \le L_{uckGrade}<408:3.418+0.001\left|L_{uckGrade}-407\right|,408 \le L_{uckGrade}<412:3.419+0.002\left|L_{uckGrade}-408\right|,412 \le L_{uckGrade}<413:3.427+0.001\left|L_{uckGrade}-412\right|,413 \le L_{uckGrade}<416:3.428+0.002\left|L_{uckGrade}-413\right|,416 \le L_{uckGrade}<417:3.434+0.001\left|L_{uckGrade}-416\right|,417 \le L_{uckGrade}<419:3.435+0.002\left|L_{uckGrade}-417\right|,419 \le L_{uckGrade}<420:3.439+0.001\left|L_{uckGrade}-419\right|,420 \le L_{uckGrade}<421:3.44+0.002\left|L_{uckGrade}-420\right|,421 \le L_{uckGrade}<422:3.442+0.001\left|L_{uckGrade}-421\right|,422 \le L_{uckGrade}<423:3.443+0.002\left|L_{uckGrade}-422\right|,423 \le L_{uckGrade}<424:3.445+0.001\left|L_{uckGrade}-423\right|,424 \le L_{uckGrade}<426:3.446+0.002\left|L_{uckGrade}-424\right|,426 \le L_{uckGrade}<428:3.45+0.001\left|L_{uckGrade}-426\right|,428 \le L_{uckGrade}<429:3.452+0.002\left|L_{uckGrade}-428\right|,429 \le L_{uckGrade}<430:3.454+0.001\left|L_{uckGrade}-429\right|,430 \le L_{uckGrade}<431:3.455+0.002\left|L_{uckGrade}-430\right|,431 \le L_{uckGrade}<433:3.457+0.001\left|L_{uckGrade}-431\right|,433 \le L_{uckGrade}<434:3.459+0.002\left|L_{uckGrade}-433\right|,434 \le L_{uckGrade}<436:3.461+0.001\left|L_{uckGrade}-434\right|,436 \le L_{uckGrade}<437:3.463+0.002\left|L_{uckGrade}-436\right|,437 \le L_{uckGrade}<440:3.465+0.001\left|L_{uckGrade}-437\right|,440 \le L_{uckGrade}<441:3.468+0.002\left|L_{uckGrade}-440\right|,441 \le L_{uckGrade}<449:3.47+0.001\left|L_{uckGrade}-441\right|,449 \le L_{uckGrade}<450:3.478+0.002\left|L_{uckGrade}-449\right|,450 \le L_{uckGrade}<451:3.48+0.001\left|L_{uckGrade}-450\right|,451 \le L_{uckGrade}<452:3.481+0\left|L_{uckGrade}-451\right|,452 \le L_{uckGrade}<460:3.481+0.001\left|L_{uckGrade}-452\right|,460 \le L_{uckGrade}<461:3.489+0\left|L_{uckGrade}-460\right|,461 \le L_{uckGrade}<464:3.489+0.001\left|L_{uckGrade}-461\right|,464 \le L_{uckGrade}<465:3.492+0\left|L_{uckGrade}-464\right|,465 \le L_{uckGrade}<467:3.492+0.001\left|L_{uckGrade}-465\right|,467 \le L_{uckGrade}<468:3.494+0\left|L_{uckGrade}-467\right|,468 \le L_{uckGrade}<470:3.494+0.001\left|L_{uckGrade}-468\right|,470 \le L_{uckGrade}<471:3.496+0\left|L_{uckGrade}-470\right|,471 \le L_{uckGrade}<472:3.496+0.001\left|L_{uckGrade}-471\right|,472 \le L_{uckGrade}<473:3.497+0\left|L_{uckGrade}-472\right|,473 \le L_{uckGrade}<475:3.497+0.001\left|L_{uckGrade}-473\right|,475 \le L_{uckGrade}<477:3.499+0\left|L_{uckGrade}-475\right|,477 \le L_{uckGrade}<478:3.499+0.001\left|L_{uckGrade}-477\right|,478 \le L_{uckGrade}<479:3.5+0\left|L_{uckGrade}-478\right|,479 \le L_{uckGrade}<480:3.5+0.001\left|L_{uckGrade}-479\right|,480 \le L_{uckGrade}<481:3.501+0\left|L_{uckGrade}-480\right|,481 \le L_{uckGrade}<482:3.501+0.001\left|L_{uckGrade}-481\right|,482 \le L_{uckGrade}<484:3.502+0\left|L_{uckGrade}-482\right|,484 \le L_{uckGrade}<485:3.502+0.001\left|L_{uckGrade}-484\right|,485 \le L_{uckGrade}<488:3.503+0\left|L_{uckGrade}-485\right|,488 \le L_{uckGrade}<489:3.503+0.001\left|L_{uckGrade}-488\right|,489 \le L_{uckGrade}<493:3.504+0\left|L_{uckGrade}-489\right|,493 \le L_{uckGrade}<494:3.504+0.001\left|L_{uckGrade}-493\right|,494 \le L_{uckGrade}<500:3.505+0\left|L_{uckGrade}-494\right|\right\}

See Example for how to use.


LaTeX Formula

Can be pasted into Desmos or other LaTeX editors for quick use of the equation.

Triple click to select all. Note: Some browsers will add an extra return carriage (line end) after the formula. Remove it before pasting for best results.

L_{uckGrade05}(L_{uckGrade})=\left\{0 \le L_{uckGrade}<1:1+0.012\left|L_{uckGrade}-0\right|,1 \le L_{uckGrade}<3:1.012+0.011\left|L_{uckGrade}-1\right|,3 \le L_{uckGrade}<4:1.034+0.012\left|L_{uckGrade}-3\right|,4 \le L_{uckGrade}<5:1.046+0.011\left|L_{uckGrade}-4\right|,5 \le L_{uckGrade}<6:1.057+0.012\left|L_{uckGrade}-5\right|,6 \le L_{uckGrade}<8:1.069+0.011\left|L_{uckGrade}-6\right|,8 \le L_{uckGrade}<9:1.091+0.012\left|L_{uckGrade}-8\right|,9 \le L_{uckGrade}<12:1.103+0.011\left|L_{uckGrade}-9\right|,12 \le L_{uckGrade}<13:1.136+0.012\left|L_{uckGrade}-12\right|,13 \le L_{uckGrade}<18:1.148+0.011\left|L_{uckGrade}-13\right|,18 \le L_{uckGrade}<19:1.203+0.012\left|L_{uckGrade}-18\right|,19 \le L_{uckGrade}<26:1.215+0.011\left|L_{uckGrade}-19\right|,26 \le L_{uckGrade}<27:1.292+0.01\left|L_{uckGrade}-26\right|,27 \le L_{uckGrade}<32:1.302+0.011\left|L_{uckGrade}-27\right|,32 \le L_{uckGrade}<33:1.357+0.01\left|L_{uckGrade}-32\right|,33 \le L_{uckGrade}<36:1.367+0.011\left|L_{uckGrade}-33\right|,36 \le L_{uckGrade}<37:1.4+0.01\left|L_{uckGrade}-36\right|,37 \le L_{uckGrade}<38:1.41+0.011\left|L_{uckGrade}-37\right|,38 \le L_{uckGrade}<39:1.421+0.01\left|L_{uckGrade}-38\right|,39 \le L_{uckGrade}<41:1.431+0.011\left|L_{uckGrade}-39\right|,41 \le L_{uckGrade}<42:1.453+0.01\left|L_{uckGrade}-41\right|,42 \le L_{uckGrade}<43:1.463+0.011\left|L_{uckGrade}-42\right|,43 \le L_{uckGrade}<44:1.474+0.01\left|L_{uckGrade}-43\right|,44 \le L_{uckGrade}<45:1.484+0.011\left|L_{uckGrade}-44\right|,45 \le L_{uckGrade}<46:1.495+0.01\left|L_{uckGrade}-45\right|,46 \le L_{uckGrade}<47:1.505+0.011\left|L_{uckGrade}-46\right|,47 \le L_{uckGrade}<49:1.516+0.01\left|L_{uckGrade}-47\right|,49 \le L_{uckGrade}<50:1.536+0.011\left|L_{uckGrade}-49\right|,50 \le L_{uckGrade}<51:1.547+0.01\left|L_{uckGrade}-50\right|,51 \le L_{uckGrade}<52:1.557+0.011\left|L_{uckGrade}-51\right|,52 \le L_{uckGrade}<55:1.568+0.01\left|L_{uckGrade}-52\right|,55 \le L_{uckGrade}<56:1.598+0.011\left|L_{uckGrade}-55\right|,56 \le L_{uckGrade}<61:1.609+0.01\left|L_{uckGrade}-56\right|,61 \le L_{uckGrade}<62:1.659+0.011\left|L_{uckGrade}-61\right|,62 \le L_{uckGrade}<69:1.67+0.01\left|L_{uckGrade}-62\right|,69 \le L_{uckGrade}<70:1.74+0.009\left|L_{uckGrade}-69\right|,70 \le L_{uckGrade}<75:1.749+0.01\left|L_{uckGrade}-70\right|,75 \le L_{uckGrade}<76:1.799+0.009\left|L_{uckGrade}-75\right|,76 \le L_{uckGrade}<79:1.808+0.01\left|L_{uckGrade}-76\right|,79 \le L_{uckGrade}<80:1.838+0.009\left|L_{uckGrade}-79\right|,80 \le L_{uckGrade}<82:1.847+0.01\left|L_{uckGrade}-80\right|,82 \le L_{uckGrade}<83:1.867+0.009\left|L_{uckGrade}-82\right|,83 \le L_{uckGrade}<84:1.876+0.01\left|L_{uckGrade}-83\right|,84 \le L_{uckGrade}<85:1.886+0.009\left|L_{uckGrade}-84\right|,85 \le L_{uckGrade}<86:1.895+0.01\left|L_{uckGrade}-85\right|,86 \le L_{uckGrade}<87:1.905+0.009\left|L_{uckGrade}-86\right|,87 \le L_{uckGrade}<88:1.914+0.01\left|L_{uckGrade}-87\right|,88 \le L_{uckGrade}<89:1.924+0.009\left|L_{uckGrade}-88\right|,89 \le L_{uckGrade}<90:1.933+0.01\left|L_{uckGrade}-89\right|,90 \le L_{uckGrade}<91:1.943+0.009\left|L_{uckGrade}-90\right|,91 \le L_{uckGrade}<92:1.952+0.01\left|L_{uckGrade}-91\right|,92 \le L_{uckGrade}<94:1.962+0.009\left|L_{uckGrade}-92\right|,94 \le L_{uckGrade}<95:1.98+0.01\left|L_{uckGrade}-94\right|,95 \le L_{uckGrade}<97:1.99+0.009\left|L_{uckGrade}-95\right|,97 \le L_{uckGrade}<98:2.008+0.01\left|L_{uckGrade}-97\right|,98 \le L_{uckGrade}<101:2.018+0.009\left|L_{uckGrade}-98\right|,101 \le L_{uckGrade}<102:2.045+0.01\left|L_{uckGrade}-101\right|,102 \le L_{uckGrade}<116:2.055+0.009\left|L_{uckGrade}-102\right|,116 \le L_{uckGrade}<117:2.181+0.008\left|L_{uckGrade}-116\right|,117 \le L_{uckGrade}<121:2.189+0.009\left|L_{uckGrade}-117\right|,121 \le L_{uckGrade}<122:2.225+0.008\left|L_{uckGrade}-121\right|,122 \le L_{uckGrade}<124:2.233+0.009\left|L_{uckGrade}-122\right|,124 \le L_{uckGrade}<125:2.251+0.008\left|L_{uckGrade}-124\right|,125 \le L_{uckGrade}<126:2.259+0.009\left|L_{uckGrade}-125\right|,126 \le L_{uckGrade}<127:2.268+0.008\left|L_{uckGrade}-126\right|,127 \le L_{uckGrade}<129:2.276+0.009\left|L_{uckGrade}-127\right|,129 \le L_{uckGrade}<130:2.294+0.008\left|L_{uckGrade}-129\right|,130 \le L_{uckGrade}<131:2.302+0.009\left|L_{uckGrade}-130\right|,131 \le L_{uckGrade}<132:2.311+0.008\left|L_{uckGrade}-131\right|,132 \le L_{uckGrade}<133:2.319+0.009\left|L_{uckGrade}-132\right|,133 \le L_{uckGrade}<135:2.328+0.008\left|L_{uckGrade}-133\right|,135 \le L_{uckGrade}<136:2.344+0.009\left|L_{uckGrade}-135\right|,136 \le L_{uckGrade}<137:2.353+0.008\left|L_{uckGrade}-136\right|,137 \le L_{uckGrade}<138:2.361+0.009\left|L_{uckGrade}-137\right|,138 \le L_{uckGrade}<141:2.37+0.008\left|L_{uckGrade}-138\right|,141 \le L_{uckGrade}<142:2.394+0.009\left|L_{uckGrade}-141\right|,142 \le L_{uckGrade}<145:2.403+0.008\left|L_{uckGrade}-142\right|,145 \le L_{uckGrade}<146:2.427+0.009\left|L_{uckGrade}-145\right|,146 \le L_{uckGrade}<159:2.436+0.008\left|L_{uckGrade}-146\right|,159 \le L_{uckGrade}<160:2.54+0.007\left|L_{uckGrade}-159\right|,160 \le L_{uckGrade}<164:2.547+0.008\left|L_{uckGrade}-160\right|,164 \le L_{uckGrade}<165:2.579+0.007\left|L_{uckGrade}-164\right|,165 \le L_{uckGrade}<167:2.586+0.008\left|L_{uckGrade}-165\right|,167 \le L_{uckGrade}<168:2.602+0.007\left|L_{uckGrade}-167\right|,168 \le L_{uckGrade}<170:2.609+0.008\left|L_{uckGrade}-168\right|,170 \le L_{uckGrade}<171:2.625+0.007\left|L_{uckGrade}-170\right|,171 \le L_{uckGrade}<172:2.632+0.008\left|L_{uckGrade}-171\right|,172 \le L_{uckGrade}<173:2.64+0.007\left|L_{uckGrade}-172\right|,173 \le L_{uckGrade}<174:2.647+0.008\left|L_{uckGrade}-173\right|,174 \le L_{uckGrade}<175:2.655+0.007\left|L_{uckGrade}-174\right|,175 \le L_{uckGrade}<176:2.662+0.008\left|L_{uckGrade}-175\right|,176 \le L_{uckGrade}<177:2.67+0.007\left|L_{uckGrade}-176\right|,177 \le L_{uckGrade}<178:2.677+0.008\left|L_{uckGrade}-177\right|,178 \le L_{uckGrade}<180:2.685+0.007\left|L_{uckGrade}-178\right|,180 \le L_{uckGrade}<181:2.699+0.008\left|L_{uckGrade}-180\right|,181 \le L_{uckGrade}<183:2.707+0.007\left|L_{uckGrade}-181\right|,183 \le L_{uckGrade}<184:2.721+0.008\left|L_{uckGrade}-183\right|,184 \le L_{uckGrade}<186:2.729+0.007\left|L_{uckGrade}-184\right|,186 \le L_{uckGrade}<187:2.743+0.008\left|L_{uckGrade}-186\right|,187 \le L_{uckGrade}<205:2.751+0.007\left|L_{uckGrade}-187\right|,205 \le L_{uckGrade}<206:2.877+0.006\left|L_{uckGrade}-205\right|,206 \le L_{uckGrade}<209:2.883+0.007\left|L_{uckGrade}-206\right|,209 \le L_{uckGrade}<210:2.904+0.006\left|L_{uckGrade}-209\right|,210 \le L_{uckGrade}<212:2.91+0.007\left|L_{uckGrade}-210\right|,212 \le L_{uckGrade}<213:2.924+0.006\left|L_{uckGrade}-212\right|,213 \le L_{uckGrade}<214:2.93+0.007\left|L_{uckGrade}-213\right|,214 \le L_{uckGrade}<215:2.937+0.006\left|L_{uckGrade}-214\right|,215 \le L_{uckGrade}<216:2.943+0.007\left|L_{uckGrade}-215\right|,216 \le L_{uckGrade}<217:2.95+0.006\left|L_{uckGrade}-216\right|,217 \le L_{uckGrade}<218:2.956+0.007\left|L_{uckGrade}-217\right|,218 \le L_{uckGrade}<219:2.963+0.006\left|L_{uckGrade}-218\right|,219 \le L_{uckGrade}<220:2.969+0.007\left|L_{uckGrade}-219\right|,220 \le L_{uckGrade}<221:2.976+0.006\left|L_{uckGrade}-220\right|,221 \le L_{uckGrade}<222:2.982+0.007\left|L_{uckGrade}-221\right|,222 \le L_{uckGrade}<223:2.989+0.006\left|L_{uckGrade}-222\right|,223 \le L_{uckGrade}<224:2.995+0.007\left|L_{uckGrade}-223\right|,224 \le L_{uckGrade}<226:3.002+0.006\left|L_{uckGrade}-224\right|,226 \le L_{uckGrade}<227:3.014+0.007\left|L_{uckGrade}-226\right|,227 \le L_{uckGrade}<230:3.021+0.006\left|L_{uckGrade}-227\right|,230 \le L_{uckGrade}<231:3.039+0.007\left|L_{uckGrade}-230\right|,231 \le L_{uckGrade}<248:3.046+0.006\left|L_{uckGrade}-231\right|,248 \le L_{uckGrade}<249:3.148+0.005\left|L_{uckGrade}-248\right|,249 \le L_{uckGrade}<252:3.153+0.006\left|L_{uckGrade}-249\right|,252 \le L_{uckGrade}<253:3.171+0.005\left|L_{uckGrade}-252\right|,253 \le L_{uckGrade}<255:3.176+0.006\left|L_{uckGrade}-253\right|,255 \le L_{uckGrade}<256:3.188+0.005\left|L_{uckGrade}-255\right|,256 \le L_{uckGrade}<257:3.193+0.006\left|L_{uckGrade}-256\right|,257 \le L_{uckGrade}<258:3.199+0.005\left|L_{uckGrade}-257\right|,258 \le L_{uckGrade}<260:3.204+0.006\left|L_{uckGrade}-258\right|,260 \le L_{uckGrade}<261:3.216+0.005\left|L_{uckGrade}-260\right|,261 \le L_{uckGrade}<262:3.221+0.006\left|L_{uckGrade}-261\right|,262 \le L_{uckGrade}<263:3.227+0.005\left|L_{uckGrade}-262\right|,263 \le L_{uckGrade}<264:3.232+0.006\left|L_{uckGrade}-263\right|,264 \le L_{uckGrade}<266:3.238+0.005\left|L_{uckGrade}-264\right|,266 \le L_{uckGrade}<267:3.248+0.006\left|L_{uckGrade}-266\right|,267 \le L_{uckGrade}<269:3.254+0.005\left|L_{uckGrade}-267\right|,269 \le L_{uckGrade}<270:3.264+0.006\left|L_{uckGrade}-269\right|,270 \le L_{uckGrade}<272:3.27+0.005\left|L_{uckGrade}-270\right|,272 \le L_{uckGrade}<273:3.28+0.006\left|L_{uckGrade}-272\right|,273 \le L_{uckGrade}<278:3.286+0.005\left|L_{uckGrade}-273\right|,278 \le L_{uckGrade}<279:3.311+0.006\left|L_{uckGrade}-278\right|,279 \le L_{uckGrade}<287:3.317+0.005\left|L_{uckGrade}-279\right|,287 \le L_{uckGrade}<288:3.357+0.004\left|L_{uckGrade}-287\right|,288 \le L_{uckGrade}<293:3.361+0.005\left|L_{uckGrade}-288\right|,293 \le L_{uckGrade}<294:3.386+0.004\left|L_{uckGrade}-293\right|,294 \le L_{uckGrade}<297:3.39+0.005\left|L_{uckGrade}-294\right|,297 \le L_{uckGrade}<298:3.405+0.004\left|L_{uckGrade}-297\right|,298 \le L_{uckGrade}<299:3.409+0.005\left|L_{uckGrade}-298\right|,299 \le L_{uckGrade}<300:3.414+0.004\left|L_{uckGrade}-299\right|,300 \le L_{uckGrade}<302:3.418+0.005\left|L_{uckGrade}-300\right|,302 \le L_{uckGrade}<303:3.428+0.004\left|L_{uckGrade}-302\right|,303 \le L_{uckGrade}<304:3.432+0.005\left|L_{uckGrade}-303\right|,304 \le L_{uckGrade}<305:3.437+0.004\left|L_{uckGrade}-304\right|,305 \le L_{uckGrade}<306:3.441+0.005\left|L_{uckGrade}-305\right|,306 \le L_{uckGrade}<307:3.446+0.004\left|L_{uckGrade}-306\right|,307 \le L_{uckGrade}<308:3.45+0.005\left|L_{uckGrade}-307\right|,308 \le L_{uckGrade}<310:3.455+0.004\left|L_{uckGrade}-308\right|,310 \le L_{uckGrade}<311:3.463+0.005\left|L_{uckGrade}-310\right|,311 \le L_{uckGrade}<313:3.468+0.004\left|L_{uckGrade}-311\right|,313 \le L_{uckGrade}<314:3.476+0.005\left|L_{uckGrade}-313\right|,314 \le L_{uckGrade}<316:3.481+0.004\left|L_{uckGrade}-314\right|,316 \le L_{uckGrade}<317:3.489+0.005\left|L_{uckGrade}-316\right|,317 \le L_{uckGrade}<323:3.494+0.004\left|L_{uckGrade}-317\right|,323 \le L_{uckGrade}<324:3.518+0.005\left|L_{uckGrade}-323\right|,324 \le L_{uckGrade}<329:3.523+0.004\left|L_{uckGrade}-324\right|,329 \le L_{uckGrade}<330:3.543+0.003\left|L_{uckGrade}-329\right|,330 \le L_{uckGrade}<336:3.546+0.004\left|L_{uckGrade}-330\right|,336 \le L_{uckGrade}<337:3.57+0.003\left|L_{uckGrade}-336\right|,337 \le L_{uckGrade}<340:3.573+0.004\left|L_{uckGrade}-337\right|,340 \le L_{uckGrade}<341:3.585+0.003\left|L_{uckGrade}-340\right|,341 \le L_{uckGrade}<342:3.588+0.004\left|L_{uckGrade}-341\right|,342 \le L_{uckGrade}<343:3.592+0.003\left|L_{uckGrade}-342\right|,343 \le L_{uckGrade}<345:3.595+0.004\left|L_{uckGrade}-343\right|,345 \le L_{uckGrade}<346:3.603+0.003\left|L_{uckGrade}-345\right|,346 \le L_{uckGrade}<347:3.606+0.004\left|L_{uckGrade}-346\right|,347 \le L_{uckGrade}<348:3.61+0.003\left|L_{uckGrade}-347\right|,348 \le L_{uckGrade}<349:3.613+0.004\left|L_{uckGrade}-348\right|,349 \le L_{uckGrade}<350:3.617+0.003\left|L_{uckGrade}-349\right|,350 \le L_{uckGrade}<351:3.62+0.004\left|L_{uckGrade}-350\right|,351 \le L_{uckGrade}<352:3.624+0.003\left|L_{uckGrade}-351\right|,352 \le L_{uckGrade}<353:3.627+0.004\left|L_{uckGrade}-352\right|,353 \le L_{uckGrade}<355:3.631+0.003\left|L_{uckGrade}-353\right|,355 \le L_{uckGrade}<356:3.637+0.004\left|L_{uckGrade}-355\right|,356 \le L_{uckGrade}<359:3.641+0.003\left|L_{uckGrade}-356\right|,359 \le L_{uckGrade}<360:3.65+0.004\left|L_{uckGrade}-359\right|,360 \le L_{uckGrade}<364:3.654+0.003\left|L_{uckGrade}-360\right|,364 \le L_{uckGrade}<365:3.666+0.004\left|L_{uckGrade}-364\right|,365 \le L_{uckGrade}<376:3.67+0.003\left|L_{uckGrade}-365\right|,376 \le L_{uckGrade}<377:3.703+0.002\left|L_{uckGrade}-376\right|,377 \le L_{uckGrade}<381:3.705+0.003\left|L_{uckGrade}-377\right|,381 \le L_{uckGrade}<382:3.717+0.002\left|L_{uckGrade}-381\right|,382 \le L_{uckGrade}<384:3.719+0.003\left|L_{uckGrade}-382\right|,384 \le L_{uckGrade}<385:3.725+0.002\left|L_{uckGrade}-384\right|,385 \le L_{uckGrade}<387:3.727+0.003\left|L_{uckGrade}-385\right|,387 \le L_{uckGrade}<388:3.733+0.002\left|L_{uckGrade}-387\right|,388 \le L_{uckGrade}<389:3.735+0.003\left|L_{uckGrade}-388\right|,389 \le L_{uckGrade}<390:3.738+0.002\left|L_{uckGrade}-389\right|,390 \le L_{uckGrade}<391:3.74+0.003\left|L_{uckGrade}-390\right|,391 \le L_{uckGrade}<392:3.743+0.002\left|L_{uckGrade}-391\right|,392 \le L_{uckGrade}<393:3.745+0.003\left|L_{uckGrade}-392\right|,393 \le L_{uckGrade}<394:3.748+0.002\left|L_{uckGrade}-393\right|,394 \le L_{uckGrade}<395:3.75+0.003\left|L_{uckGrade}-394\right|,395 \le L_{uckGrade}<396:3.753+0.002\left|L_{uckGrade}-395\right|,396 \le L_{uckGrade}<397:3.755+0.003\left|L_{uckGrade}-396\right|,397 \le L_{uckGrade}<399:3.758+0.002\left|L_{uckGrade}-397\right|,399 \le L_{uckGrade}<400:3.762+0.003\left|L_{uckGrade}-399\right|,400 \le L_{uckGrade}<403:3.765+0.002\left|L_{uckGrade}-400\right|,403 \le L_{uckGrade}<404:3.771+0.003\left|L_{uckGrade}-403\right|,404 \le L_{uckGrade}<409:3.774+0.002\left|L_{uckGrade}-404\right|,409 \le L_{uckGrade}<410:3.784+0.003\left|L_{uckGrade}-409\right|,410 \le L_{uckGrade}<417:3.787+0.002\left|L_{uckGrade}-410\right|,417 \le L_{uckGrade}<418:3.801+0.001\left|L_{uckGrade}-417\right|,418 \le L_{uckGrade}<423:3.802+0.002\left|L_{uckGrade}-418\right|,423 \le L_{uckGrade}<424:3.812+0.001\left|L_{uckGrade}-423\right|,424 \le L_{uckGrade}<427:3.813+0.002\left|L_{uckGrade}-424\right|,427 \le L_{uckGrade}<428:3.819+0.001\left|L_{uckGrade}-427\right|,428 \le L_{uckGrade}<430:3.82+0.002\left|L_{uckGrade}-428\right|,430 \le L_{uckGrade}<431:3.824+0.001\left|L_{uckGrade}-430\right|,431 \le L_{uckGrade}<432:3.825+0.002\left|L_{uckGrade}-431\right|,432 \le L_{uckGrade}<433:3.827+0.001\left|L_{uckGrade}-432\right|,433 \le L_{uckGrade}<434:3.828+0.002\left|L_{uckGrade}-433\right|,434 \le L_{uckGrade}<435:3.83+0.001\left|L_{uckGrade}-434\right|,435 \le L_{uckGrade}<436:3.831+0.002\left|L_{uckGrade}-435\right|,436 \le L_{uckGrade}<437:3.833+0.001\left|L_{uckGrade}-436\right|,437 \le L_{uckGrade}<438:3.834+0.002\left|L_{uckGrade}-437\right|,438 \le L_{uckGrade}<439:3.836+0.001\left|L_{uckGrade}-438\right|,439 \le L_{uckGrade}<440:3.837+0.002\left|L_{uckGrade}-439\right|,440 \le L_{uckGrade}<442:3.839+0.001\left|L_{uckGrade}-440\right|,442 \le L_{uckGrade}<443:3.841+0.002\left|L_{uckGrade}-442\right|,443 \le L_{uckGrade}<445:3.843+0.001\left|L_{uckGrade}-443\right|,445 \le L_{uckGrade}<446:3.845+0.002\left|L_{uckGrade}-445\right|,446 \le L_{uckGrade}<450:3.847+0.001\left|L_{uckGrade}-446\right|,450 \le L_{uckGrade}<451:3.851+0.002\left|L_{uckGrade}-450\right|,451 \le L_{uckGrade}<463:3.853+0.001\left|L_{uckGrade}-451\right|,463 \le L_{uckGrade}<464:3.865+0\left|L_{uckGrade}-463\right|,464 \le L_{uckGrade}<468:3.865+0.001\left|L_{uckGrade}-464\right|,468 \le L_{uckGrade}<469:3.869+0\left|L_{uckGrade}-468\right|,469 \le L_{uckGrade}<471:3.869+0.001\left|L_{uckGrade}-469\right|,471 \le L_{uckGrade}<472:3.871+0\left|L_{uckGrade}-471\right|,472 \le L_{uckGrade}<474:3.871+0.001\left|L_{uckGrade}-472\right|,474 \le L_{uckGrade}<475:3.873+0\left|L_{uckGrade}-474\right|,475 \le L_{uckGrade}<476:3.873+0.001\left|L_{uckGrade}-475\right|,476 \le L_{uckGrade}<477:3.874+0\left|L_{uckGrade}-476\right|,477 \le L_{uckGrade}<478:3.874+0.001\left|L_{uckGrade}-477\right|,478 \le L_{uckGrade}<479:3.875+0\left|L_{uckGrade}-478\right|,479 \le L_{uckGrade}<480:3.875+0.001\left|L_{uckGrade}-479\right|,480 \le L_{uckGrade}<481:3.876+0\left|L_{uckGrade}-480\right|,481 \le L_{uckGrade}<482:3.876+0.001\left|L_{uckGrade}-481\right|,482 \le L_{uckGrade}<483:3.877+0\left|L_{uckGrade}-482\right|,483 \le L_{uckGrade}<484:3.877+0.001\left|L_{uckGrade}-483\right|,484 \le L_{uckGrade}<486:3.878+0\left|L_{uckGrade}-484\right|,486 \le L_{uckGrade}<487:3.878+0.001\left|L_{uckGrade}-486\right|,487 \le L_{uckGrade}<490:3.879+0\left|L_{uckGrade}-487\right|,490 \le L_{uckGrade}<491:3.879+0.001\left|L_{uckGrade}-490\right|,491 \le L_{uckGrade}<495:3.88+0\left|L_{uckGrade}-491\right|,495 \le L_{uckGrade}<496:3.88+0.001\left|L_{uckGrade}-495\right|,496 \le L_{uckGrade}<500:3.881+0\left|L_{uckGrade}-496\right|\right\}

See Example for how to use.


LaTeX Formula

Can be pasted into Desmos or other LaTeX editors for quick use of the equation.

Triple click to select all. Note: Some browsers will add an extra return carriage (line end) after the formula. Remove it before pasting for best results.

L_{uckGrade06}(L_{uckGrade})=\left\{0 \le L_{uckGrade}<6:1+0.013\left|L_{uckGrade}-0\right|,6 \le L_{uckGrade}<7:1.078+0.012\left|L_{uckGrade}-6\right|,7 \le L_{uckGrade}<11:1.09+0.013\left|L_{uckGrade}-7\right|,11 \le L_{uckGrade}<12:1.142+0.012\left|L_{uckGrade}-11\right|,12 \le L_{uckGrade}<14:1.154+0.013\left|L_{uckGrade}-12\right|,14 \le L_{uckGrade}<15:1.18+0.012\left|L_{uckGrade}-14\right|,15 \le L_{uckGrade}<16:1.192+0.013\left|L_{uckGrade}-15\right|,16 \le L_{uckGrade}<17:1.205+0.012\left|L_{uckGrade}-16\right|,17 \le L_{uckGrade}<19:1.217+0.013\left|L_{uckGrade}-17\right|,19 \le L_{uckGrade}<20:1.243+0.012\left|L_{uckGrade}-19\right|,20 \le L_{uckGrade}<21:1.255+0.013\left|L_{uckGrade}-20\right|,21 \le L_{uckGrade}<23:1.268+0.012\left|L_{uckGrade}-21\right|,23 \le L_{uckGrade}<24:1.292+0.013\left|L_{uckGrade}-23\right|,24 \le L_{uckGrade}<25:1.305+0.012\left|L_{uckGrade}-24\right|,25 \le L_{uckGrade}<26:1.317+0.013\left|L_{uckGrade}-25\right|,26 \le L_{uckGrade}<29:1.33+0.012\left|L_{uckGrade}-26\right|,29 \le L_{uckGrade}<30:1.366+0.013\left|L_{uckGrade}-29\right|,30 \le L_{uckGrade}<34:1.379+0.012\left|L_{uckGrade}-30\right|,34 \le L_{uckGrade}<35:1.427+0.013\left|L_{uckGrade}-34\right|,35 \le L_{uckGrade}<43:1.44+0.012\left|L_{uckGrade}-35\right|,43 \le L_{uckGrade}<44:1.536+0.011\left|L_{uckGrade}-43\right|,44 \le L_{uckGrade}<48:1.547+0.012\left|L_{uckGrade}-44\right|,48 \le L_{uckGrade}<49:1.595+0.011\left|L_{uckGrade}-48\right|,49 \le L_{uckGrade}<52:1.606+0.012\left|L_{uckGrade}-49\right|,52 \le L_{uckGrade}<53:1.642+0.011\left|L_{uckGrade}-52\right|,53 \le L_{uckGrade}<54:1.653+0.012\left|L_{uckGrade}-53\right|,54 \le L_{uckGrade}<55:1.665+0.011\left|L_{uckGrade}-54\right|,55 \le L_{uckGrade}<57:1.676+0.012\left|L_{uckGrade}-55\right|,57 \le L_{uckGrade}<58:1.7+0.011\left|L_{uckGrade}-57\right|,58 \le L_{uckGrade}<59:1.711+0.012\left|L_{uckGrade}-58\right|,59 \le L_{uckGrade}<61:1.723+0.011\left|L_{uckGrade}-59\right|,61 \le L_{uckGrade}<62:1.745+0.012\left|L_{uckGrade}-61\right|,62 \le L_{uckGrade}<63:1.757+0.011\left|L_{uckGrade}-62\right|,63 \le L_{uckGrade}<64:1.768+0.012\left|L_{uckGrade}-63\right|,64 \le L_{uckGrade}<66:1.78+0.011\left|L_{uckGrade}-64\right|,66 \le L_{uckGrade}<67:1.802+0.012\left|L_{uckGrade}-66\right|,67 \le L_{uckGrade}<71:1.814+0.011\left|L_{uckGrade}-67\right|,71 \le L_{uckGrade}<72:1.858+0.012\left|L_{uckGrade}-71\right|,72 \le L_{uckGrade}<83:1.87+0.011\left|L_{uckGrade}-72\right|,83 \le L_{uckGrade}<84:1.991+0.01\left|L_{uckGrade}-83\right|,84 \le L_{uckGrade}<87:2.001+0.011\left|L_{uckGrade}-84\right|,87 \le L_{uckGrade}<88:2.034+0.01\left|L_{uckGrade}-87\right|,88 \le L_{uckGrade}<91:2.044+0.011\left|L_{uckGrade}-88\right|,91 \le L_{uckGrade}<92:2.077+0.01\left|L_{uckGrade}-91\right|,92 \le L_{uckGrade}<93:2.087+0.011\left|L_{uckGrade}-92\right|,93 \le L_{uckGrade}<94:2.098+0.01\left|L_{uckGrade}-93\right|,94 \le L_{uckGrade}<95:2.108+0.011\left|L_{uckGrade}-94\right|,95 \le L_{uckGrade}<96:2.119+0.01\left|L_{uckGrade}-95\right|,96 \le L_{uckGrade}<97:2.129+0.011\left|L_{uckGrade}-96\right|,97 \le L_{uckGrade}<98:2.14+0.01\left|L_{uckGrade}-97\right|,98 \le L_{uckGrade}<99:2.15+0.011\left|L_{uckGrade}-98\right|,99 \le L_{uckGrade}<100:2.161+0.01\left|L_{uckGrade}-99\right|,100 \le L_{uckGrade}<101:2.171+0.011\left|L_{uckGrade}-100\right|,101 \le L_{uckGrade}<103:2.182+0.01\left|L_{uckGrade}-101\right|,103 \le L_{uckGrade}<104:2.202+0.011\left|L_{uckGrade}-103\right|,104 \le L_{uckGrade}<106:2.213+0.01\left|L_{uckGrade}-104\right|,106 \le L_{uckGrade}<107:2.233+0.011\left|L_{uckGrade}-106\right|,107 \le L_{uckGrade}<113:2.244+0.01\left|L_{uckGrade}-107\right|,113 \le L_{uckGrade}<114:2.304+0.011\left|L_{uckGrade}-113\right|,114 \le L_{uckGrade}<118:2.315+0.01\left|L_{uckGrade}-114\right|,118 \le L_{uckGrade}<119:2.355+0.009\left|L_{uckGrade}-118\right|,119 \le L_{uckGrade}<125:2.364+0.01\left|L_{uckGrade}-119\right|,125 \le L_{uckGrade}<126:2.424+0.009\left|L_{uckGrade}-125\right|,126 \le L_{uckGrade}<128:2.433+0.01\left|L_{uckGrade}-126\right|,128 \le L_{uckGrade}<129:2.453+0.009\left|L_{uckGrade}-128\right|,129 \le L_{uckGrade}<131:2.462+0.01\left|L_{uckGrade}-129\right|,131 \le L_{uckGrade}<132:2.482+0.009\left|L_{uckGrade}-131\right|,132 \le L_{uckGrade}<133:2.491+0.01\left|L_{uckGrade}-132\right|,133 \le L_{uckGrade}<134:2.501+0.009\left|L_{uckGrade}-133\right|,134 \le L_{uckGrade}<135:2.51+0.01\left|L_{uckGrade}-134\right|,135 \le L_{uckGrade}<136:2.52+0.009\left|L_{uckGrade}-135\right|,136 \le L_{uckGrade}<137:2.529+0.01\left|L_{uckGrade}-136\right|,137 \le L_{uckGrade}<138:2.539+0.009\left|L_{uckGrade}-137\right|,138 \le L_{uckGrade}<139:2.548+0.01\left|L_{uckGrade}-138\right|,139 \le L_{uckGrade}<141:2.558+0.009\left|L_{uckGrade}-139\right|,141 \le L_{uckGrade}<142:2.576+0.01\left|L_{uckGrade}-141\right|,142 \le L_{uckGrade}<144:2.586+0.009\left|L_{uckGrade}-142\right|,144 \le L_{uckGrade}<145:2.604+0.01\left|L_{uckGrade}-144\right|,145 \le L_{uckGrade}<150:2.614+0.009\left|L_{uckGrade}-145\right|,150 \le L_{uckGrade}<151:2.659+0.01\left|L_{uckGrade}-150\right|,151 \le L_{uckGrade}<158:2.669+0.009\left|L_{uckGrade}-151\right|,158 \le L_{uckGrade}<159:2.732+0.008\left|L_{uckGrade}-158\right|,159 \le L_{uckGrade}<163:2.74+0.009\left|L_{uckGrade}-159\right|,163 \le L_{uckGrade}<164:2.776+0.008\left|L_{uckGrade}-163\right|,164 \le L_{uckGrade}<167:2.784+0.009\left|L_{uckGrade}-164\right|,167 \le L_{uckGrade}<168:2.811+0.008\left|L_{uckGrade}-167\right|,168 \le L_{uckGrade}<170:2.819+0.009\left|L_{uckGrade}-168\right|,170 \le L_{uckGrade}<171:2.837+0.008\left|L_{uckGrade}-170\right|,171 \le L_{uckGrade}<172:2.845+0.009\left|L_{uckGrade}-171\right|,172 \le L_{uckGrade}<173:2.854+0.008\left|L_{uckGrade}-172\right|,173 \le L_{uckGrade}<174:2.862+0.009\left|L_{uckGrade}-173\right|,174 \le L_{uckGrade}<175:2.871+0.008\left|L_{uckGrade}-174\right|,175 \le L_{uckGrade}<176:2.879+0.009\left|L_{uckGrade}-175\right|,176 \le L_{uckGrade}<178:2.888+0.008\left|L_{uckGrade}-176\right|,178 \le L_{uckGrade}<179:2.904+0.009\left|L_{uckGrade}-178\right|,179 \le L_{uckGrade}<181:2.913+0.008\left|L_{uckGrade}-179\right|,181 \le L_{uckGrade}<182:2.929+0.009\left|L_{uckGrade}-181\right|,182 \le L_{uckGrade}<185:2.938+0.008\left|L_{uckGrade}-182\right|,185 \le L_{uckGrade}<186:2.962+0.009\left|L_{uckGrade}-185\right|,186 \le L_{uckGrade}<200:2.971+0.008\left|L_{uckGrade}-186\right|,200 \le L_{uckGrade}<201:3.083+0.007\left|L_{uckGrade}-200\right|,201 \le L_{uckGrade}<204:3.09+0.008\left|L_{uckGrade}-201\right|,204 \le L_{uckGrade}<205:3.114+0.007\left|L_{uckGrade}-204\right|,205 \le L_{uckGrade}<207:3.121+0.008\left|L_{uckGrade}-205\right|,207 \le L_{uckGrade}<208:3.137+0.007\left|L_{uckGrade}-207\right|,208 \le L_{uckGrade}<209:3.144+0.008\left|L_{uckGrade}-208\right|,209 \le L_{uckGrade}<210:3.152+0.007\left|L_{uckGrade}-209\right|,210 \le L_{uckGrade}<211:3.159+0.008\left|L_{uckGrade}-210\right|,211 \le L_{uckGrade}<212:3.167+0.007\left|L_{uckGrade}-211\right|,212 \le L_{uckGrade}<213:3.174+0.008\left|L_{uckGrade}-212\right|,213 \le L_{uckGrade}<214:3.182+0.007\left|L_{uckGrade}-213\right|,214 \le L_{uckGrade}<215:3.189+0.008\left|L_{uckGrade}-214\right|,215 \le L_{uckGrade}<216:3.197+0.007\left|L_{uckGrade}-215\right|,216 \le L_{uckGrade}<217:3.204+0.008\left|L_{uckGrade}-216\right|,217 \le L_{uckGrade}<219:3.212+0.007\left|L_{uckGrade}-217\right|,219 \le L_{uckGrade}<220:3.226+0.008\left|L_{uckGrade}-219\right|,220 \le L_{uckGrade}<223:3.234+0.007\left|L_{uckGrade}-220\right|,223 \le L_{uckGrade}<224:3.255+0.008\left|L_{uckGrade}-223\right|,224 \le L_{uckGrade}<239:3.263+0.007\left|L_{uckGrade}-224\right|,239 \le L_{uckGrade}<240:3.368+0.006\left|L_{uckGrade}-239\right|,240 \le L_{uckGrade}<243:3.374+0.007\left|L_{uckGrade}-240\right|,243 \le L_{uckGrade}<244:3.395+0.006\left|L_{uckGrade}-243\right|,244 \le L_{uckGrade}<245:3.401+0.007\left|L_{uckGrade}-244\right|,245 \le L_{uckGrade}<246:3.408+0.006\left|L_{uckGrade}-245\right|,246 \le L_{uckGrade}<248:3.414+0.007\left|L_{uckGrade}-246\right|,248 \le L_{uckGrade}<249:3.428+0.006\left|L_{uckGrade}-248\right|,249 \le L_{uckGrade}<250:3.434+0.007\left|L_{uckGrade}-249\right|,250 \le L_{uckGrade}<251:3.441+0.006\left|L_{uckGrade}-250\right|,251 \le L_{uckGrade}<252:3.447+0.007\left|L_{uckGrade}-251\right|,252 \le L_{uckGrade}<253:3.454+0.006\left|L_{uckGrade}-252\right|,253 \le L_{uckGrade}<254:3.46+0.007\left|L_{uckGrade}-253\right|,254 \le L_{uckGrade}<256:3.467+0.006\left|L_{uckGrade}-254\right|,256 \le L_{uckGrade}<257:3.479+0.007\left|L_{uckGrade}-256\right|,257 \le L_{uckGrade}<259:3.486+0.006\left|L_{uckGrade}-257\right|,259 \le L_{uckGrade}<260:3.498+0.007\left|L_{uckGrade}-259\right|,260 \le L_{uckGrade}<264:3.505+0.006\left|L_{uckGrade}-260\right|,264 \le L_{uckGrade}<265:3.529+0.007\left|L_{uckGrade}-264\right|,265 \le L_{uckGrade}<274:3.536+0.006\left|L_{uckGrade}-265\right|,274 \le L_{uckGrade}<275:3.59+0.005\left|L_{uckGrade}-274\right|,275 \le L_{uckGrade}<279:3.595+0.006\left|L_{uckGrade}-275\right|,279 \le L_{uckGrade}<280:3.619+0.005\left|L_{uckGrade}-279\right|,280 \le L_{uckGrade}<283:3.624+0.006\left|L_{uckGrade}-280\right|,283 \le L_{uckGrade}<284:3.642+0.005\left|L_{uckGrade}-283\right|,284 \le L_{uckGrade}<285:3.647+0.006\left|L_{uckGrade}-284\right|,285 \le L_{uckGrade}<286:3.653+0.005\left|L_{uckGrade}-285\right|,286 \le L_{uckGrade}<287:3.658+0.006\left|L_{uckGrade}-286\right|,287 \le L_{uckGrade}<288:3.664+0.005\left|L_{uckGrade}-287\right|,288 \le L_{uckGrade}<289:3.669+0.006\left|L_{uckGrade}-288\right|,289 \le L_{uckGrade}<290:3.675+0.005\left|L_{uckGrade}-289\right|,290 \le L_{uckGrade}<291:3.68+0.006\left|L_{uckGrade}-290\right|,291 \le L_{uckGrade}<292:3.686+0.005\left|L_{uckGrade}-291\right|,292 \le L_{uckGrade}<293:3.691+0.006\left|L_{uckGrade}-292\right|,293 \le L_{uckGrade}<294:3.697+0.005\left|L_{uckGrade}-293\right|,294 \le L_{uckGrade}<295:3.702+0.006\left|L_{uckGrade}-294\right|,295 \le L_{uckGrade}<298:3.708+0.005\left|L_{uckGrade}-295\right|,298 \le L_{uckGrade}<299:3.723+0.006\left|L_{uckGrade}-298\right|,299 \le L_{uckGrade}<303:3.729+0.005\left|L_{uckGrade}-299\right|,303 \le L_{uckGrade}<304:3.749+0.006\left|L_{uckGrade}-303\right|,304 \le L_{uckGrade}<312:3.755+0.005\left|L_{uckGrade}-304\right|,312 \le L_{uckGrade}<313:3.795+0.004\left|L_{uckGrade}-312\right|,313 \le L_{uckGrade}<318:3.799+0.005\left|L_{uckGrade}-313\right|,318 \le L_{uckGrade}<319:3.824+0.004\left|L_{uckGrade}-318\right|,319 \le L_{uckGrade}<321:3.828+0.005\left|L_{uckGrade}-319\right|,321 \le L_{uckGrade}<322:3.838+0.004\left|L_{uckGrade}-321\right|,322 \le L_{uckGrade}<324:3.842+0.005\left|L_{uckGrade}-322\right|,324 \le L_{uckGrade}<325:3.852+0.004\left|L_{uckGrade}-324\right|,325 \le L_{uckGrade}<326:3.856+0.005\left|L_{uckGrade}-325\right|,326 \le L_{uckGrade}<327:3.861+0.004\left|L_{uckGrade}-326\right|,327 \le L_{uckGrade}<328:3.865+0.005\left|L_{uckGrade}-327\right|,328 \le L_{uckGrade}<329:3.87+0.004\left|L_{uckGrade}-328\right|,329 \le L_{uckGrade}<330:3.874+0.005\left|L_{uckGrade}-329\right|,330 \le L_{uckGrade}<332:3.879+0.004\left|L_{uckGrade}-330\right|,332 \le L_{uckGrade}<333:3.887+0.005\left|L_{uckGrade}-332\right|,333 \le L_{uckGrade}<335:3.892+0.004\left|L_{uckGrade}-333\right|,335 \le L_{uckGrade}<336:3.9+0.005\left|L_{uckGrade}-335\right|,336 \le L_{uckGrade}<339:3.905+0.004\left|L_{uckGrade}-336\right|,339 \le L_{uckGrade}<340:3.917+0.005\left|L_{uckGrade}-339\right|,340 \le L_{uckGrade}<353:3.922+0.004\left|L_{uckGrade}-340\right|,353 \le L_{uckGrade}<354:3.974+0.003\left|L_{uckGrade}-353\right|,354 \le L_{uckGrade}<358:3.977+0.004\left|L_{uckGrade}-354\right|,358 \le L_{uckGrade}<359:3.993+0.003\left|L_{uckGrade}-358\right|,359 \le L_{uckGrade}<361:3.996+0.004\left|L_{uckGrade}-359\right|,361 \le L_{uckGrade}<362:4.004+0.003\left|L_{uckGrade}-361\right|,362 \le L_{uckGrade}<363:4.007+0.004\left|L_{uckGrade}-362\right|,363 \le L_{uckGrade}<364:4.011+0.003\left|L_{uckGrade}-363\right|,364 \le L_{uckGrade}<365:4.014+0.004\left|L_{uckGrade}-364\right|,365 \le L_{uckGrade}<366:4.018+0.003\left|L_{uckGrade}-365\right|,366 \le L_{uckGrade}<367:4.021+0.004\left|L_{uckGrade}-366\right|,367 \le L_{uckGrade}<368:4.025+0.003\left|L_{uckGrade}-367\right|,368 \le L_{uckGrade}<369:4.028+0.004\left|L_{uckGrade}-368\right|,369 \le L_{uckGrade}<371:4.032+0.003\left|L_{uckGrade}-369\right|,371 \le L_{uckGrade}<372:4.038+0.004\left|L_{uckGrade}-371\right|,372 \le L_{uckGrade}<374:4.042+0.003\left|L_{uckGrade}-372\right|,374 \le L_{uckGrade}<375:4.048+0.004\left|L_{uckGrade}-374\right|,375 \le L_{uckGrade}<378:4.052+0.003\left|L_{uckGrade}-375\right|,378 \le L_{uckGrade}<379:4.061+0.004\left|L_{uckGrade}-378\right|,379 \le L_{uckGrade}<391:4.065+0.003\left|L_{uckGrade}-379\right|,391 \le L_{uckGrade}<392:4.101+0.002\left|L_{uckGrade}-391\right|,392 \le L_{uckGrade}<396:4.103+0.003\left|L_{uckGrade}-392\right|,396 \le L_{uckGrade}<397:4.115+0.002\left|L_{uckGrade}-396\right|,397 \le L_{uckGrade}<399:4.117+0.003\left|L_{uckGrade}-397\right|,399 \le L_{uckGrade}<400:4.123+0.002\left|L_{uckGrade}-399\right|,400 \le L_{uckGrade}<401:4.125+0.003\left|L_{uckGrade}-400\right|,401 \le L_{uckGrade}<402:4.128+0.002\left|L_{uckGrade}-401\right|,402 \le L_{uckGrade}<403:4.13+0.003\left|L_{uckGrade}-402\right|,403 \le L_{uckGrade}<404:4.133+0.002\left|L_{uckGrade}-403\right|,404 \le L_{uckGrade}<405:4.135+0.003\left|L_{uckGrade}-404\right|,405 \le L_{uckGrade}<406:4.138+0.002\left|L_{uckGrade}-405\right|,406 \le L_{uckGrade}<407:4.14+0.003\left|L_{uckGrade}-406\right|,407 \le L_{uckGrade}<408:4.143+0.002\left|L_{uckGrade}-407\right|,408 \le L_{uckGrade}<409:4.145+0.003\left|L_{uckGrade}-408\right|,409 \le L_{uckGrade}<411:4.148+0.002\left|L_{uckGrade}-409\right|,411 \le L_{uckGrade}<412:4.152+0.003\left|L_{uckGrade}-411\right|,412 \le L_{uckGrade}<415:4.155+0.002\left|L_{uckGrade}-412\right|,415 \le L_{uckGrade}<416:4.161+0.003\left|L_{uckGrade}-415\right|,416 \le L_{uckGrade}<432:4.164+0.002\left|L_{uckGrade}-416\right|,432 \le L_{uckGrade}<433:4.196+0.001\left|L_{uckGrade}-432\right|,433 \le L_{uckGrade}<435:4.197+0.002\left|L_{uckGrade}-433\right|,435 \le L_{uckGrade}<436:4.201+0.001\left|L_{uckGrade}-435\right|,436 \le L_{uckGrade}<438:4.202+0.002\left|L_{uckGrade}-436\right|,438 \le L_{uckGrade}<439:4.206+0.001\left|L_{uckGrade}-438\right|,439 \le L_{uckGrade}<440:4.207+0.002\left|L_{uckGrade}-439\right|,440 \le L_{uckGrade}<441:4.209+0.001\left|L_{uckGrade}-440\right|,441 \le L_{uckGrade}<443:4.21+0.002\left|L_{uckGrade}-441\right|,443 \le L_{uckGrade}<445:4.214+0.001\left|L_{uckGrade}-443\right|,445 \le L_{uckGrade}<446:4.216+0.002\left|L_{uckGrade}-445\right|,446 \le L_{uckGrade}<447:4.218+0.001\left|L_{uckGrade}-446\right|,447 \le L_{uckGrade}<448:4.219+0.002\left|L_{uckGrade}-447\right|,448 \le L_{uckGrade}<450:4.221+0.001\left|L_{uckGrade}-448\right|,450 \le L_{uckGrade}<451:4.223+0.002\left|L_{uckGrade}-450\right|,451 \le L_{uckGrade}<454:4.225+0.001\left|L_{uckGrade}-451\right|,454 \le L_{uckGrade}<455:4.228+0.002\left|L_{uckGrade}-454\right|,455 \le L_{uckGrade}<469:4.23+0.001\left|L_{uckGrade}-455\right|,469 \le L_{uckGrade}<470:4.244+0\left|L_{uckGrade}-469\right|,470 \le L_{uckGrade}<473:4.244+0.001\left|L_{uckGrade}-470\right|,473 \le L_{uckGrade}<474:4.247+0\left|L_{uckGrade}-473\right|,474 \le L_{uckGrade}<476:4.247+0.001\left|L_{uckGrade}-474\right|,476 \le L_{uckGrade}<477:4.249+0\left|L_{uckGrade}-476\right|,477 \le L_{uckGrade}<478:4.249+0.001\left|L_{uckGrade}-477\right|,478 \le L_{uckGrade}<479:4.25+0\left|L_{uckGrade}-478\right|,479 \le L_{uckGrade}<481:4.25+0.001\left|L_{uckGrade}-479\right|,481 \le L_{uckGrade}<482:4.252+0\left|L_{uckGrade}-481\right|,482 \le L_{uckGrade}<483:4.252+0.001\left|L_{uckGrade}-482\right|,483 \le L_{uckGrade}<485:4.253+0\left|L_{uckGrade}-483\right|,485 \le L_{uckGrade}<486:4.253+0.001\left|L_{uckGrade}-485\right|,486 \le L_{uckGrade}<488:4.254+0\left|L_{uckGrade}-486\right|,488 \le L_{uckGrade}<489:4.254+0.001\left|L_{uckGrade}-488\right|,489 \le L_{uckGrade}<491:4.255+0\left|L_{uckGrade}-489\right|,491 \le L_{uckGrade}<492:4.255+0.001\left|L_{uckGrade}-491\right|,492 \le L_{uckGrade}<499:4.256+0\left|L_{uckGrade}-492\right|,499 \le L_{uckGrade}<500:4.256+0.001\left|L_{uckGrade}-499\right|\right\}

See Example for how to use.


LaTeX Formula

Can be pasted into Desmos or other LaTeX editors for quick use of the equation.

Triple click to select all. Note: Some browsers will add an extra return carriage (line end) after the formula. Remove it before pasting for best results.

L_{uckGrade07}(L_{uckGrade})=\left\{0 \le L_{uckGrade}<1:1+0.014\left|L_{uckGrade}-0\right|,1 \le L_{uckGrade}<3:1.014+0.013\left|L_{uckGrade}-1\right|,3 \le L_{uckGrade}<4:1.04+0.014\left|L_{uckGrade}-3\right|,4 \le L_{uckGrade}<5:1.054+0.013\left|L_{uckGrade}-4\right|,5 \le L_{uckGrade}<6:1.067+0.014\left|L_{uckGrade}-5\right|,6 \le L_{uckGrade}<8:1.081+0.013\left|L_{uckGrade}-6\right|,8 \le L_{uckGrade}<9:1.107+0.014\left|L_{uckGrade}-8\right|,9 \le L_{uckGrade}<13:1.121+0.013\left|L_{uckGrade}-9\right|,13 \le L_{uckGrade}<14:1.173+0.014\left|L_{uckGrade}-13\right|,14 \le L_{uckGrade}<24:1.187+0.013\left|L_{uckGrade}-14\right|,24 \le L_{uckGrade}<25:1.317+0.012\left|L_{uckGrade}-24\right|,25 \le L_{uckGrade}<29:1.329+0.013\left|L_{uckGrade}-25\right|,29 \le L_{uckGrade}<30:1.381+0.012\left|L_{uckGrade}-29\right|,30 \le L_{uckGrade}<32:1.393+0.013\left|L_{uckGrade}-30\right|,32 \le L_{uckGrade}<33:1.419+0.012\left|L_{uckGrade}-32\right|,33 \le L_{uckGrade}<34:1.431+0.013\left|L_{uckGrade}-33\right|,34 \le L_{uckGrade}<35:1.444+0.012\left|L_{uckGrade}-34\right|,35 \le L_{uckGrade}<37:1.456+0.013\left|L_{uckGrade}-35\right|,37 \le L_{uckGrade}<39:1.482+0.012\left|L_{uckGrade}-37\right|,39 \le L_{uckGrade}<40:1.506+0.013\left|L_{uckGrade}-39\right|,40 \le L_{uckGrade}<41:1.519+0.012\left|L_{uckGrade}-40\right|,41 \le L_{uckGrade}<42:1.531+0.013\left|L_{uckGrade}-41\right|,42 \le L_{uckGrade}<44:1.544+0.012\left|L_{uckGrade}-42\right|,44 \le L_{uckGrade}<45:1.568+0.013\left|L_{uckGrade}-44\right|,45 \le L_{uckGrade}<47:1.581+0.012\left|L_{uckGrade}-45\right|,47 \le L_{uckGrade}<48:1.605+0.013\left|L_{uckGrade}-47\right|,48 \le L_{uckGrade}<64:1.618+0.012\left|L_{uckGrade}-48\right|,64 \le L_{uckGrade}<65:1.81+0.011\left|L_{uckGrade}-64\right|,65 \le L_{uckGrade}<67:1.821+0.012\left|L_{uckGrade}-65\right|,67 \le L_{uckGrade}<68:1.845+0.011\left|L_{uckGrade}-67\right|,68 \le L_{uckGrade}<70:1.856+0.012\left|L_{uckGrade}-68\right|,70 \le L_{uckGrade}<71:1.88+0.011\left|L_{uckGrade}-70\right|,71 \le L_{uckGrade}<73:1.891+0.012\left|L_{uckGrade}-71\right|,73 \le L_{uckGrade}<74:1.915+0.011\left|L_{uckGrade}-73\right|,74 \le L_{uckGrade}<75:1.926+0.012\left|L_{uckGrade}-74\right|,75 \le L_{uckGrade}<77:1.938+0.011\left|L_{uckGrade}-75\right|,77 \le L_{uckGrade}<78:1.96+0.012\left|L_{uckGrade}-77\right|,78 \le L_{uckGrade}<79:1.972+0.011\left|L_{uckGrade}-78\right|,79 \le L_{uckGrade}<80:1.983+0.012\left|L_{uckGrade}-79\right|,80 \le L_{uckGrade}<82:1.995+0.011\left|L_{uckGrade}-80\right|,82 \le L_{uckGrade}<83:2.017+0.012\left|L_{uckGrade}-82\right|,83 \le L_{uckGrade}<87:2.029+0.011\left|L_{uckGrade}-83\right|,87 \le L_{uckGrade}<88:2.073+0.012\left|L_{uckGrade}-87\right|,88 \le L_{uckGrade}<99:2.085+0.011\left|L_{uckGrade}-88\right|,99 \le L_{uckGrade}<100:2.206+0.01\left|L_{uckGrade}-99\right|,100 \le L_{uckGrade}<103:2.216+0.011\left|L_{uckGrade}-100\right|,103 \le L_{uckGrade}<104:2.249+0.01\left|L_{uckGrade}-103\right|,104 \le L_{uckGrade}<106:2.259+0.011\left|L_{uckGrade}-104\right|,106 \le L_{uckGrade}<107:2.281+0.01\left|L_{uckGrade}-106\right|,107 \le L_{uckGrade}<109:2.291+0.011\left|L_{uckGrade}-107\right|,109 \le L_{uckGrade}<110:2.313+0.01\left|L_{uckGrade}-109\right|,110 \le L_{uckGrade}<111:2.323+0.011\left|L_{uckGrade}-110\right|,111 \le L_{uckGrade}<112:2.334+0.01\left|L_{uckGrade}-111\right|,112 \le L_{uckGrade}<113:2.344+0.011\left|L_{uckGrade}-112\right|,113 \le L_{uckGrade}<114:2.355+0.01\left|L_{uckGrade}-113\right|,114 \le L_{uckGrade}<115:2.365+0.011\left|L_{uckGrade}-114\right|,115 \le L_{uckGrade}<117:2.376+0.01\left|L_{uckGrade}-115\right|,117 \le L_{uckGrade}<118:2.396+0.011\left|L_{uckGrade}-117\right|,118 \le L_{uckGrade}<121:2.407+0.01\left|L_{uckGrade}-118\right|,121 \le L_{uckGrade}<122:2.437+0.011\left|L_{uckGrade}-121\right|,122 \le L_{uckGrade}<127:2.448+0.01\left|L_{uckGrade}-122\right|,127 \le L_{uckGrade}<128:2.498+0.011\left|L_{uckGrade}-127\right|,128 \le L_{uckGrade}<132:2.509+0.01\left|L_{uckGrade}-128\right|,132 \le L_{uckGrade}<133:2.549+0.009\left|L_{uckGrade}-132\right|,133 \le L_{uckGrade}<139:2.558+0.01\left|L_{uckGrade}-133\right|,139 \le L_{uckGrade}<140:2.618+0.009\left|L_{uckGrade}-139\right|,140 \le L_{uckGrade}<142:2.627+0.01\left|L_{uckGrade}-140\right|,142 \le L_{uckGrade}<143:2.647+0.009\left|L_{uckGrade}-142\right|,143 \le L_{uckGrade}<145:2.656+0.01\left|L_{uckGrade}-143\right|,145 \le L_{uckGrade}<146:2.676+0.009\left|L_{uckGrade}-145\right|,146 \le L_{uckGrade}<147:2.685+0.01\left|L_{uckGrade}-146\right|,147 \le L_{uckGrade}<148:2.695+0.009\left|L_{uckGrade}-147\right|,148 \le L_{uckGrade}<149:2.704+0.01\left|L_{uckGrade}-148\right|,149 \le L_{uckGrade}<150:2.714+0.009\left|L_{uckGrade}-149\right|,150 \le L_{uckGrade}<151:2.723+0.01\left|L_{uckGrade}-150\right|,151 \le L_{uckGrade}<152:2.733+0.009\left|L_{uckGrade}-151\right|,152 \le L_{uckGrade}<153:2.742+0.01\left|L_{uckGrade}-152\right|,153 \le L_{uckGrade}<155:2.752+0.009\left|L_{uckGrade}-153\right|,155 \le L_{uckGrade}<156:2.77+0.01\left|L_{uckGrade}-155\right|,156 \le L_{uckGrade}<159:2.78+0.009\left|L_{uckGrade}-156\right|,159 \le L_{uckGrade}<160:2.807+0.01\left|L_{uckGrade}-159\right|,160 \le L_{uckGrade}<174:2.817+0.009\left|L_{uckGrade}-160\right|,174 \le L_{uckGrade}<175:2.943+0.008\left|L_{uckGrade}-174\right|,175 \le L_{uckGrade}<178:2.951+0.009\left|L_{uckGrade}-175\right|,178 \le L_{uckGrade}<179:2.978+0.008\left|L_{uckGrade}-178\right|,179 \le L_{uckGrade}<181:2.986+0.009\left|L_{uckGrade}-179\right|,181 \le L_{uckGrade}<182:3.004+0.008\left|L_{uckGrade}-181\right|,182 \le L_{uckGrade}<183:3.012+0.009\left|L_{uckGrade}-182\right|,183 \le L_{uckGrade}<184:3.021+0.008\left|L_{uckGrade}-183\right|,184 \le L_{uckGrade}<185:3.029+0.009\left|L_{uckGrade}-184\right|,185 \le L_{uckGrade}<186:3.038+0.008\left|L_{uckGrade}-185\right|,186 \le L_{uckGrade}<187:3.046+0.009\left|L_{uckGrade}-186\right|,187 \le L_{uckGrade}<188:3.055+0.008\left|L_{uckGrade}-187\right|,188 \le L_{uckGrade}<189:3.063+0.009\left|L_{uckGrade}-188\right|,189 \le L_{uckGrade}<190:3.072+0.008\left|L_{uckGrade}-189\right|,190 \le L_{uckGrade}<191:3.08+0.009\left|L_{uckGrade}-190\right|,191 \le L_{uckGrade}<193:3.089+0.008\left|L_{uckGrade}-191\right|,193 \le L_{uckGrade}<194:3.105+0.009\left|L_{uckGrade}-193\right|,194 \le L_{uckGrade}<198:3.114+0.008\left|L_{uckGrade}-194\right|,198 \le L_{uckGrade}<199:3.146+0.009\left|L_{uckGrade}-198\right|,199 \le L_{uckGrade}<209:3.155+0.008\left|L_{uckGrade}-199\right|,209 \le L_{uckGrade}<210:3.235+0.007\left|L_{uckGrade}-209\right|,210 \le L_{uckGrade}<214:3.242+0.008\left|L_{uckGrade}-210\right|,214 \le L_{uckGrade}<215:3.274+0.007\left|L_{uckGrade}-214\right|,215 \le L_{uckGrade}<217:3.281+0.008\left|L_{uckGrade}-215\right|,217 \le L_{uckGrade}<218:3.297+0.007\left|L_{uckGrade}-217\right|,218 \le L_{uckGrade}<220:3.304+0.008\left|L_{uckGrade}-218\right|,220 \le L_{uckGrade}<221:3.32+0.007\left|L_{uckGrade}-220\right|,221 \le L_{uckGrade}<222:3.327+0.008\left|L_{uckGrade}-221\right|,222 \le L_{uckGrade}<223:3.335+0.007\left|L_{uckGrade}-222\right|,223 \le L_{uckGrade}<224:3.342+0.008\left|L_{uckGrade}-223\right|,224 \le L_{uckGrade}<225:3.35+0.007\left|L_{uckGrade}-224\right|,225 \le L_{uckGrade}<226:3.357+0.008\left|L_{uckGrade}-225\right|,226 \le L_{uckGrade}<228:3.365+0.007\left|L_{uckGrade}-226\right|,228 \le L_{uckGrade}<229:3.379+0.008\left|L_{uckGrade}-228\right|,229 \le L_{uckGrade}<231:3.387+0.007\left|L_{uckGrade}-229\right|,231 \le L_{uckGrade}<232:3.401+0.008\left|L_{uckGrade}-231\right|,232 \le L_{uckGrade}<237:3.409+0.007\left|L_{uckGrade}-232\right|,237 \le L_{uckGrade}<238:3.444+0.008\left|L_{uckGrade}-237\right|,238 \le L_{uckGrade}<244:3.452+0.007\left|L_{uckGrade}-238\right|,244 \le L_{uckGrade}<245:3.494+0.006\left|L_{uckGrade}-244\right|,245 \le L_{uckGrade}<250:3.5+0.007\left|L_{uckGrade}-245\right|,250 \le L_{uckGrade}<251:3.535+0.006\left|L_{uckGrade}-250\right|,251 \le L_{uckGrade}<253:3.541+0.007\left|L_{uckGrade}-251\right|,253 \le L_{uckGrade}<254:3.555+0.006\left|L_{uckGrade}-253\right|,254 \le L_{uckGrade}<256:3.561+0.007\left|L_{uckGrade}-254\right|,256 \le L_{uckGrade}<257:3.575+0.006\left|L_{uckGrade}-256\right|,257 \le L_{uckGrade}<258:3.581+0.007\left|L_{uckGrade}-257\right|,258 \le L_{uckGrade}<259:3.588+0.006\left|L_{uckGrade}-258\right|,259 \le L_{uckGrade}<260:3.594+0.007\left|L_{uckGrade}-259\right|,260 \le L_{uckGrade}<261:3.601+0.006\left|L_{uckGrade}-260\right|,261 \le L_{uckGrade}<262:3.607+0.007\left|L_{uckGrade}-261\right|,262 \le L_{uckGrade}<263:3.614+0.006\left|L_{uckGrade}-262\right|,263 \le L_{uckGrade}<264:3.62+0.007\left|L_{uckGrade}-263\right|,264 \le L_{uckGrade}<266:3.627+0.006\left|L_{uckGrade}-264\right|,266 \le L_{uckGrade}<267:3.639+0.007\left|L_{uckGrade}-266\right|,267 \le L_{uckGrade}<270:3.646+0.006\left|L_{uckGrade}-267\right|,270 \le L_{uckGrade}<271:3.664+0.007\left|L_{uckGrade}-270\right|,271 \le L_{uckGrade}<286:3.671+0.006\left|L_{uckGrade}-271\right|,286 \le L_{uckGrade}<287:3.761+0.005\left|L_{uckGrade}-286\right|,287 \le L_{uckGrade}<290:3.766+0.006\left|L_{uckGrade}-287\right|,290 \le L_{uckGrade}<291:3.784+0.005\left|L_{uckGrade}-290\right|,291 \le L_{uckGrade}<292:3.789+0.006\left|L_{uckGrade}-291\right|,292 \le L_{uckGrade}<293:3.795+0.005\left|L_{uckGrade}-292\right|,293 \le L_{uckGrade}<295:3.8+0.006\left|L_{uckGrade}-293\right|,295 \le L_{uckGrade}<296:3.812+0.005\left|L_{uckGrade}-295\right|,296 \le L_{uckGrade}<297:3.817+0.006\left|L_{uckGrade}-296\right|,297 \le L_{uckGrade}<298:3.823+0.005\left|L_{uckGrade}-297\right|,298 \le L_{uckGrade}<299:3.828+0.006\left|L_{uckGrade}-298\right|,299 \le L_{uckGrade}<301:3.834+0.005\left|L_{uckGrade}-299\right|,301 \le L_{uckGrade}<302:3.844+0.006\left|L_{uckGrade}-301\right|,302 \le L_{uckGrade}<304:3.85+0.005\left|L_{uckGrade}-302\right|,304 \le L_{uckGrade}<305:3.86+0.006\left|L_{uckGrade}-304\right|,305 \le L_{uckGrade}<308:3.866+0.005\left|L_{uckGrade}-305\right|,308 \le L_{uckGrade}<309:3.881+0.006\left|L_{uckGrade}-308\right|,309 \le L_{uckGrade}<322:3.887+0.005\left|L_{uckGrade}-309\right|,322 \le L_{uckGrade}<323:3.952+0.004\left|L_{uckGrade}-322\right|,323 \le L_{uckGrade}<326:3.956+0.005\left|L_{uckGrade}-323\right|,326 \le L_{uckGrade}<327:3.971+0.004\left|L_{uckGrade}-326\right|,327 \le L_{uckGrade}<329:3.975+0.005\left|L_{uckGrade}-327\right|,329 \le L_{uckGrade}<330:3.985+0.004\left|L_{uckGrade}-329\right|,330 \le L_{uckGrade}<331:3.989+0.005\left|L_{uckGrade}-330\right|,331 \le L_{uckGrade}<332:3.994+0.004\left|L_{uckGrade}-331\right|,332 \le L_{uckGrade}<334:3.998+0.005\left|L_{uckGrade}-332\right|,334 \le L_{uckGrade}<336:4.008+0.004\left|L_{uckGrade}-334\right|,336 \le L_{uckGrade}<337:4.016+0.005\left|L_{uckGrade}-336\right|,337 \le L_{uckGrade}<338:4.021+0.004\left|L_{uckGrade}-337\right|,338 \le L_{uckGrade}<339:4.025+0.005\left|L_{uckGrade}-338\right|,339 \le L_{uckGrade}<341:4.03+0.004\left|L_{uckGrade}-339\right|,341 \le L_{uckGrade}<342:4.038+0.005\left|L_{uckGrade}-341\right|,342 \le L_{uckGrade}<345:4.043+0.004\left|L_{uckGrade}-342\right|,345 \le L_{uckGrade}<346:4.055+0.005\left|L_{uckGrade}-345\right|,346 \le L_{uckGrade}<358:4.06+0.004\left|L_{uckGrade}-346\right|,358 \le L_{uckGrade}<359:4.108+0.003\left|L_{uckGrade}-358\right|,359 \le L_{uckGrade}<363:4.111+0.004\left|L_{uckGrade}-359\right|,363 \le L_{uckGrade}<364:4.127+0.003\left|L_{uckGrade}-363\right|,364 \le L_{uckGrade}<366:4.13+0.004\left|L_{uckGrade}-364\right|,366 \le L_{uckGrade}<367:4.138+0.003\left|L_{uckGrade}-366\right|,367 \le L_{uckGrade}<368:4.141+0.004\left|L_{uckGrade}-367\right|,368 \le L_{uckGrade}<369:4.145+0.003\left|L_{uckGrade}-368\right|,369 \le L_{uckGrade}<370:4.148+0.004\left|L_{uckGrade}-369\right|,370 \le L_{uckGrade}<371:4.152+0.003\left|L_{uckGrade}-370\right|,371 \le L_{uckGrade}<372:4.155+0.004\left|L_{uckGrade}-371\right|,372 \le L_{uckGrade}<373:4.159+0.003\left|L_{uckGrade}-372\right|,373 \le L_{uckGrade}<374:4.162+0.004\left|L_{uckGrade}-373\right|,374 \le L_{uckGrade}<375:4.166+0.003\left|L_{uckGrade}-374\right|,375 \le L_{uckGrade}<376:4.169+0.004\left|L_{uckGrade}-375\right|,376 \le L_{uckGrade}<379:4.173+0.003\left|L_{uckGrade}-376\right|,379 \le L_{uckGrade}<380:4.182+0.004\left|L_{uckGrade}-379\right|,380 \le L_{uckGrade}<383:4.186+0.003\left|L_{uckGrade}-380\right|,383 \le L_{uckGrade}<384:4.195+0.004\left|L_{uckGrade}-383\right|,384 \le L_{uckGrade}<394:4.199+0.003\left|L_{uckGrade}-384\right|,394 \le L_{uckGrade}<395:4.229+0.002\left|L_{uckGrade}-394\right|,395 \le L_{uckGrade}<399:4.231+0.003\left|L_{uckGrade}-395\right|,399 \le L_{uckGrade}<400:4.243+0.002\left|L_{uckGrade}-399\right|,400 \le L_{uckGrade}<402:4.245+0.003\left|L_{uckGrade}-400\right|,402 \le L_{uckGrade}<403:4.251+0.002\left|L_{uckGrade}-402\right|,403 \le L_{uckGrade}<405:4.253+0.003\left|L_{uckGrade}-403\right|,405 \le L_{uckGrade}<406:4.259+0.002\left|L_{uckGrade}-405\right|,406 \le L_{uckGrade}<407:4.261+0.003\left|L_{uckGrade}-406\right|,407 \le L_{uckGrade}<408:4.264+0.002\left|L_{uckGrade}-407\right|,408 \le L_{uckGrade}<409:4.266+0.003\left|L_{uckGrade}-408\right|,409 \le L_{uckGrade}<410:4.269+0.002\left|L_{uckGrade}-409\right|,410 \le L_{uckGrade}<411:4.271+0.003\left|L_{uckGrade}-410\right|,411 \le L_{uckGrade}<413:4.274+0.002\left|L_{uckGrade}-411\right|,413 \le L_{uckGrade}<414:4.278+0.003\left|L_{uckGrade}-413\right|,414 \le L_{uckGrade}<416:4.281+0.002\left|L_{uckGrade}-414\right|,416 \le L_{uckGrade}<417:4.285+0.003\left|L_{uckGrade}-416\right|,417 \le L_{uckGrade}<421:4.288+0.002\left|L_{uckGrade}-417\right|,421 \le L_{uckGrade}<422:4.296+0.003\left|L_{uckGrade}-421\right|,422 \le L_{uckGrade}<431:4.299+0.002\left|L_{uckGrade}-422\right|,431 \le L_{uckGrade}<432:4.317+0.001\left|L_{uckGrade}-431\right|,432 \le L_{uckGrade}<436:4.318+0.002\left|L_{uckGrade}-432\right|,436 \le L_{uckGrade}<437:4.326+0.001\left|L_{uckGrade}-436\right|,437 \le L_{uckGrade}<439:4.327+0.002\left|L_{uckGrade}-437\right|,439 \le L_{uckGrade}<440:4.331+0.001\left|L_{uckGrade}-439\right|,440 \le L_{uckGrade}<442:4.332+0.002\left|L_{uckGrade}-440\right|,442 \le L_{uckGrade}<443:4.336+0.001\left|L_{uckGrade}-442\right|,443 \le L_{uckGrade}<444:4.337+0.002\left|L_{uckGrade}-443\right|,444 \le L_{uckGrade}<445:4.339+0.001\left|L_{uckGrade}-444\right|,445 \le L_{uckGrade}<446:4.34+0.002\left|L_{uckGrade}-445\right|,446 \le L_{uckGrade}<447:4.342+0.001\left|L_{uckGrade}-446\right|,447 \le L_{uckGrade}<448:4.343+0.002\left|L_{uckGrade}-447\right|,448 \le L_{uckGrade}<450:4.345+0.001\left|L_{uckGrade}-448\right|,450 \le L_{uckGrade}<451:4.347+0.002\left|L_{uckGrade}-450\right|,451 \le L_{uckGrade}<453:4.349+0.001\left|L_{uckGrade}-451\right|,453 \le L_{uckGrade}<454:4.351+0.002\left|L_{uckGrade}-453\right|,454 \le L_{uckGrade}<458:4.353+0.001\left|L_{uckGrade}-454\right|,458 \le L_{uckGrade}<459:4.357+0.002\left|L_{uckGrade}-458\right|,459 \le L_{uckGrade}<467:4.359+0.001\left|L_{uckGrade}-459\right|,467 \le L_{uckGrade}<468:4.367+0\left|L_{uckGrade}-467\right|,468 \le L_{uckGrade}<473:4.367+0.001\left|L_{uckGrade}-468\right|,473 \le L_{uckGrade}<474:4.372+0\left|L_{uckGrade}-473\right|,474 \le L_{uckGrade}<476:4.372+0.001\left|L_{uckGrade}-474\right|,476 \le L_{uckGrade}<477:4.374+0\left|L_{uckGrade}-476\right|,477 \le L_{uckGrade}<479:4.374+0.001\left|L_{uckGrade}-477\right|,479 \le L_{uckGrade}<480:4.376+0\left|L_{uckGrade}-479\right|,480 \le L_{uckGrade}<481:4.376+0.001\left|L_{uckGrade}-480\right|,481 \le L_{uckGrade}<482:4.377+0\left|L_{uckGrade}-481\right|,482 \le L_{uckGrade}<483:4.377+0.001\left|L_{uckGrade}-482\right|,483 \le L_{uckGrade}<484:4.378+0\left|L_{uckGrade}-483\right|,484 \le L_{uckGrade}<485:4.378+0.001\left|L_{uckGrade}-484\right|,485 \le L_{uckGrade}<487:4.379+0\left|L_{uckGrade}-485\right|,487 \le L_{uckGrade}<488:4.379+0.001\left|L_{uckGrade}-487\right|,488 \le L_{uckGrade}<490:4.38+0\left|L_{uckGrade}-488\right|,490 \le L_{uckGrade}<491:4.38+0.001\left|L_{uckGrade}-490\right|,491 \le L_{uckGrade}<496:4.381+0\left|L_{uckGrade}-491\right|,496 \le L_{uckGrade}<497:4.381+0.001\left|L_{uckGrade}-496\right|,497 \le L_{uckGrade}<500:4.382+0\left|L_{uckGrade}-497\right|\right\}

See Example for how to use.


LaTeX Formula

Can be pasted into Desmos or other LaTeX editors for quick use of the equation.

Triple click to select all. Note: Some browsers will add an extra return carriage (line end) after the formula. Remove it before pasting for best results.

L_{uckGrade08}(L_{uckGrade})=\left\{0 \le L_{uckGrade}<1:1+0.014\left|L_{uckGrade}-0\right|,1 \le L_{uckGrade}<3:1.014+0.013\left|L_{uckGrade}-1\right|,3 \le L_{uckGrade}<4:1.04+0.014\left|L_{uckGrade}-3\right|,4 \le L_{uckGrade}<5:1.054+0.013\left|L_{uckGrade}-4\right|,5 \le L_{uckGrade}<6:1.067+0.014\left|L_{uckGrade}-5\right|,6 \le L_{uckGrade}<8:1.081+0.013\left|L_{uckGrade}-6\right|,8 \le L_{uckGrade}<9:1.107+0.014\left|L_{uckGrade}-8\right|,9 \le L_{uckGrade}<13:1.121+0.013\left|L_{uckGrade}-9\right|,13 \le L_{uckGrade}<14:1.173+0.014\left|L_{uckGrade}-13\right|,14 \le L_{uckGrade}<24:1.187+0.013\left|L_{uckGrade}-14\right|,24 \le L_{uckGrade}<25:1.317+0.012\left|L_{uckGrade}-24\right|,25 \le L_{uckGrade}<29:1.329+0.013\left|L_{uckGrade}-25\right|,29 \le L_{uckGrade}<30:1.381+0.012\left|L_{uckGrade}-29\right|,30 \le L_{uckGrade}<32:1.393+0.013\left|L_{uckGrade}-30\right|,32 \le L_{uckGrade}<33:1.419+0.012\left|L_{uckGrade}-32\right|,33 \le L_{uckGrade}<34:1.431+0.013\left|L_{uckGrade}-33\right|,34 \le L_{uckGrade}<35:1.444+0.012\left|L_{uckGrade}-34\right|,35 \le L_{uckGrade}<37:1.456+0.013\left|L_{uckGrade}-35\right|,37 \le L_{uckGrade}<39:1.482+0.012\left|L_{uckGrade}-37\right|,39 \le L_{uckGrade}<40:1.506+0.013\left|L_{uckGrade}-39\right|,40 \le L_{uckGrade}<41:1.519+0.012\left|L_{uckGrade}-40\right|,41 \le L_{uckGrade}<42:1.531+0.013\left|L_{uckGrade}-41\right|,42 \le L_{uckGrade}<44:1.544+0.012\left|L_{uckGrade}-42\right|,44 \le L_{uckGrade}<45:1.568+0.013\left|L_{uckGrade}-44\right|,45 \le L_{uckGrade}<47:1.581+0.012\left|L_{uckGrade}-45\right|,47 \le L_{uckGrade}<48:1.605+0.013\left|L_{uckGrade}-47\right|,48 \le L_{uckGrade}<64:1.618+0.012\left|L_{uckGrade}-48\right|,64 \le L_{uckGrade}<65:1.81+0.011\left|L_{uckGrade}-64\right|,65 \le L_{uckGrade}<67:1.821+0.012\left|L_{uckGrade}-65\right|,67 \le L_{uckGrade}<68:1.845+0.011\left|L_{uckGrade}-67\right|,68 \le L_{uckGrade}<70:1.856+0.012\left|L_{uckGrade}-68\right|,70 \le L_{uckGrade}<71:1.88+0.011\left|L_{uckGrade}-70\right|,71 \le L_{uckGrade}<73:1.891+0.012\left|L_{uckGrade}-71\right|,73 \le L_{uckGrade}<74:1.915+0.011\left|L_{uckGrade}-73\right|,74 \le L_{uckGrade}<75:1.926+0.012\left|L_{uckGrade}-74\right|,75 \le L_{uckGrade}<77:1.938+0.011\left|L_{uckGrade}-75\right|,77 \le L_{uckGrade}<78:1.96+0.012\left|L_{uckGrade}-77\right|,78 \le L_{uckGrade}<79:1.972+0.011\left|L_{uckGrade}-78\right|,79 \le L_{uckGrade}<80:1.983+0.012\left|L_{uckGrade}-79\right|,80 \le L_{uckGrade}<82:1.995+0.011\left|L_{uckGrade}-80\right|,82 \le L_{uckGrade}<83:2.017+0.012\left|L_{uckGrade}-82\right|,83 \le L_{uckGrade}<87:2.029+0.011\left|L_{uckGrade}-83\right|,87 \le L_{uckGrade}<88:2.073+0.012\left|L_{uckGrade}-87\right|,88 \le L_{uckGrade}<99:2.085+0.011\left|L_{uckGrade}-88\right|,99 \le L_{uckGrade}<100:2.206+0.01\left|L_{uckGrade}-99\right|,100 \le L_{uckGrade}<103:2.216+0.011\left|L_{uckGrade}-100\right|,103 \le L_{uckGrade}<104:2.249+0.01\left|L_{uckGrade}-103\right|,104 \le L_{uckGrade}<106:2.259+0.011\left|L_{uckGrade}-104\right|,106 \le L_{uckGrade}<107:2.281+0.01\left|L_{uckGrade}-106\right|,107 \le L_{uckGrade}<109:2.291+0.011\left|L_{uckGrade}-107\right|,109 \le L_{uckGrade}<110:2.313+0.01\left|L_{uckGrade}-109\right|,110 \le L_{uckGrade}<111:2.323+0.011\left|L_{uckGrade}-110\right|,111 \le L_{uckGrade}<112:2.334+0.01\left|L_{uckGrade}-111\right|,112 \le L_{uckGrade}<113:2.344+0.011\left|L_{uckGrade}-112\right|,113 \le L_{uckGrade}<114:2.355+0.01\left|L_{uckGrade}-113\right|,114 \le L_{uckGrade}<115:2.365+0.011\left|L_{uckGrade}-114\right|,115 \le L_{uckGrade}<117:2.376+0.01\left|L_{uckGrade}-115\right|,117 \le L_{uckGrade}<118:2.396+0.011\left|L_{uckGrade}-117\right|,118 \le L_{uckGrade}<121:2.407+0.01\left|L_{uckGrade}-118\right|,121 \le L_{uckGrade}<122:2.437+0.011\left|L_{uckGrade}-121\right|,122 \le L_{uckGrade}<127:2.448+0.01\left|L_{uckGrade}-122\right|,127 \le L_{uckGrade}<128:2.498+0.011\left|L_{uckGrade}-127\right|,128 \le L_{uckGrade}<132:2.509+0.01\left|L_{uckGrade}-128\right|,132 \le L_{uckGrade}<133:2.549+0.009\left|L_{uckGrade}-132\right|,133 \le L_{uckGrade}<139:2.558+0.01\left|L_{uckGrade}-133\right|,139 \le L_{uckGrade}<140:2.618+0.009\left|L_{uckGrade}-139\right|,140 \le L_{uckGrade}<142:2.627+0.01\left|L_{uckGrade}-140\right|,142 \le L_{uckGrade}<143:2.647+0.009\left|L_{uckGrade}-142\right|,143 \le L_{uckGrade}<145:2.656+0.01\left|L_{uckGrade}-143\right|,145 \le L_{uckGrade}<146:2.676+0.009\left|L_{uckGrade}-145\right|,146 \le L_{uckGrade}<147:2.685+0.01\left|L_{uckGrade}-146\right|,147 \le L_{uckGrade}<148:2.695+0.009\left|L_{uckGrade}-147\right|,148 \le L_{uckGrade}<149:2.704+0.01\left|L_{uckGrade}-148\right|,149 \le L_{uckGrade}<150:2.714+0.009\left|L_{uckGrade}-149\right|,150 \le L_{uckGrade}<151:2.723+0.01\left|L_{uckGrade}-150\right|,151 \le L_{uckGrade}<152:2.733+0.009\left|L_{uckGrade}-151\right|,152 \le L_{uckGrade}<153:2.742+0.01\left|L_{uckGrade}-152\right|,153 \le L_{uckGrade}<155:2.752+0.009\left|L_{uckGrade}-153\right|,155 \le L_{uckGrade}<156:2.77+0.01\left|L_{uckGrade}-155\right|,156 \le L_{uckGrade}<159:2.78+0.009\left|L_{uckGrade}-156\right|,159 \le L_{uckGrade}<160:2.807+0.01\left|L_{uckGrade}-159\right|,160 \le L_{uckGrade}<174:2.817+0.009\left|L_{uckGrade}-160\right|,174 \le L_{uckGrade}<175:2.943+0.008\left|L_{uckGrade}-174\right|,175 \le L_{uckGrade}<178:2.951+0.009\left|L_{uckGrade}-175\right|,178 \le L_{uckGrade}<179:2.978+0.008\left|L_{uckGrade}-178\right|,179 \le L_{uckGrade}<181:2.986+0.009\left|L_{uckGrade}-179\right|,181 \le L_{uckGrade}<182:3.004+0.008\left|L_{uckGrade}-181\right|,182 \le L_{uckGrade}<183:3.012+0.009\left|L_{uckGrade}-182\right|,183 \le L_{uckGrade}<184:3.021+0.008\left|L_{uckGrade}-183\right|,184 \le L_{uckGrade}<185:3.029+0.009\left|L_{uckGrade}-184\right|,185 \le L_{uckGrade}<186:3.038+0.008\left|L_{uckGrade}-185\right|,186 \le L_{uckGrade}<187:3.046+0.009\left|L_{uckGrade}-186\right|,187 \le L_{uckGrade}<188:3.055+0.008\left|L_{uckGrade}-187\right|,188 \le L_{uckGrade}<189:3.063+0.009\left|L_{uckGrade}-188\right|,189 \le L_{uckGrade}<190:3.072+0.008\left|L_{uckGrade}-189\right|,190 \le L_{uckGrade}<191:3.08+0.009\left|L_{uckGrade}-190\right|,191 \le L_{uckGrade}<193:3.089+0.008\left|L_{uckGrade}-191\right|,193 \le L_{uckGrade}<194:3.105+0.009\left|L_{uckGrade}-193\right|,194 \le L_{uckGrade}<198:3.114+0.008\left|L_{uckGrade}-194\right|,198 \le L_{uckGrade}<199:3.146+0.009\left|L_{uckGrade}-198\right|,199 \le L_{uckGrade}<209:3.155+0.008\left|L_{uckGrade}-199\right|,209 \le L_{uckGrade}<210:3.235+0.007\left|L_{uckGrade}-209\right|,210 \le L_{uckGrade}<214:3.242+0.008\left|L_{uckGrade}-210\right|,214 \le L_{uckGrade}<215:3.274+0.007\left|L_{uckGrade}-214\right|,215 \le L_{uckGrade}<217:3.281+0.008\left|L_{uckGrade}-215\right|,217 \le L_{uckGrade}<218:3.297+0.007\left|L_{uckGrade}-217\right|,218 \le L_{uckGrade}<220:3.304+0.008\left|L_{uckGrade}-218\right|,220 \le L_{uckGrade}<221:3.32+0.007\left|L_{uckGrade}-220\right|,221 \le L_{uckGrade}<222:3.327+0.008\left|L_{uckGrade}-221\right|,222 \le L_{uckGrade}<223:3.335+0.007\left|L_{uckGrade}-222\right|,223 \le L_{uckGrade}<224:3.342+0.008\left|L_{uckGrade}-223\right|,224 \le L_{uckGrade}<225:3.35+0.007\left|L_{uckGrade}-224\right|,225 \le L_{uckGrade}<226:3.357+0.008\left|L_{uckGrade}-225\right|,226 \le L_{uckGrade}<228:3.365+0.007\left|L_{uckGrade}-226\right|,228 \le L_{uckGrade}<229:3.379+0.008\left|L_{uckGrade}-228\right|,229 \le L_{uckGrade}<231:3.387+0.007\left|L_{uckGrade}-229\right|,231 \le L_{uckGrade}<232:3.401+0.008\left|L_{uckGrade}-231\right|,232 \le L_{uckGrade}<237:3.409+0.007\left|L_{uckGrade}-232\right|,237 \le L_{uckGrade}<238:3.444+0.008\left|L_{uckGrade}-237\right|,238 \le L_{uckGrade}<244:3.452+0.007\left|L_{uckGrade}-238\right|,244 \le L_{uckGrade}<245:3.494+0.006\left|L_{uckGrade}-244\right|,245 \le L_{uckGrade}<250:3.5+0.007\left|L_{uckGrade}-245\right|,250 \le L_{uckGrade}<251:3.535+0.006\left|L_{uckGrade}-250\right|,251 \le L_{uckGrade}<253:3.541+0.007\left|L_{uckGrade}-251\right|,253 \le L_{uckGrade}<254:3.555+0.006\left|L_{uckGrade}-253\right|,254 \le L_{uckGrade}<256:3.561+0.007\left|L_{uckGrade}-254\right|,256 \le L_{uckGrade}<257:3.575+0.006\left|L_{uckGrade}-256\right|,257 \le L_{uckGrade}<258:3.581+0.007\left|L_{uckGrade}-257\right|,258 \le L_{uckGrade}<259:3.588+0.006\left|L_{uckGrade}-258\right|,259 \le L_{uckGrade}<260:3.594+0.007\left|L_{uckGrade}-259\right|,260 \le L_{uckGrade}<261:3.601+0.006\left|L_{uckGrade}-260\right|,261 \le L_{uckGrade}<262:3.607+0.007\left|L_{uckGrade}-261\right|,262 \le L_{uckGrade}<263:3.614+0.006\left|L_{uckGrade}-262\right|,263 \le L_{uckGrade}<264:3.62+0.007\left|L_{uckGrade}-263\right|,264 \le L_{uckGrade}<266:3.627+0.006\left|L_{uckGrade}-264\right|,266 \le L_{uckGrade}<267:3.639+0.007\left|L_{uckGrade}-266\right|,267 \le L_{uckGrade}<270:3.646+0.006\left|L_{uckGrade}-267\right|,270 \le L_{uckGrade}<271:3.664+0.007\left|L_{uckGrade}-270\right|,271 \le L_{uckGrade}<286:3.671+0.006\left|L_{uckGrade}-271\right|,286 \le L_{uckGrade}<287:3.761+0.005\left|L_{uckGrade}-286\right|,287 \le L_{uckGrade}<290:3.766+0.006\left|L_{uckGrade}-287\right|,290 \le L_{uckGrade}<291:3.784+0.005\left|L_{uckGrade}-290\right|,291 \le L_{uckGrade}<292:3.789+0.006\left|L_{uckGrade}-291\right|,292 \le L_{uckGrade}<293:3.795+0.005\left|L_{uckGrade}-292\right|,293 \le L_{uckGrade}<295:3.8+0.006\left|L_{uckGrade}-293\right|,295 \le L_{uckGrade}<296:3.812+0.005\left|L_{uckGrade}-295\right|,296 \le L_{uckGrade}<297:3.817+0.006\left|L_{uckGrade}-296\right|,297 \le L_{uckGrade}<298:3.823+0.005\left|L_{uckGrade}-297\right|,298 \le L_{uckGrade}<299:3.828+0.006\left|L_{uckGrade}-298\right|,299 \le L_{uckGrade}<301:3.834+0.005\left|L_{uckGrade}-299\right|,301 \le L_{uckGrade}<302:3.844+0.006\left|L_{uckGrade}-301\right|,302 \le L_{uckGrade}<304:3.85+0.005\left|L_{uckGrade}-302\right|,304 \le L_{uckGrade}<305:3.86+0.006\left|L_{uckGrade}-304\right|,305 \le L_{uckGrade}<308:3.866+0.005\left|L_{uckGrade}-305\right|,308 \le L_{uckGrade}<309:3.881+0.006\left|L_{uckGrade}-308\right|,309 \le L_{uckGrade}<322:3.887+0.005\left|L_{uckGrade}-309\right|,322 \le L_{uckGrade}<323:3.952+0.004\left|L_{uckGrade}-322\right|,323 \le L_{uckGrade}<326:3.956+0.005\left|L_{uckGrade}-323\right|,326 \le L_{uckGrade}<327:3.971+0.004\left|L_{uckGrade}-326\right|,327 \le L_{uckGrade}<329:3.975+0.005\left|L_{uckGrade}-327\right|,329 \le L_{uckGrade}<330:3.985+0.004\left|L_{uckGrade}-329\right|,330 \le L_{uckGrade}<331:3.989+0.005\left|L_{uckGrade}-330\right|,331 \le L_{uckGrade}<332:3.994+0.004\left|L_{uckGrade}-331\right|,332 \le L_{uckGrade}<334:3.998+0.005\left|L_{uckGrade}-332\right|,334 \le L_{uckGrade}<336:4.008+0.004\left|L_{uckGrade}-334\right|,336 \le L_{uckGrade}<337:4.016+0.005\left|L_{uckGrade}-336\right|,337 \le L_{uckGrade}<338:4.021+0.004\left|L_{uckGrade}-337\right|,338 \le L_{uckGrade}<339:4.025+0.005\left|L_{uckGrade}-338\right|,339 \le L_{uckGrade}<341:4.03+0.004\left|L_{uckGrade}-339\right|,341 \le L_{uckGrade}<342:4.038+0.005\left|L_{uckGrade}-341\right|,342 \le L_{uckGrade}<345:4.043+0.004\left|L_{uckGrade}-342\right|,345 \le L_{uckGrade}<346:4.055+0.005\left|L_{uckGrade}-345\right|,346 \le L_{uckGrade}<358:4.06+0.004\left|L_{uckGrade}-346\right|,358 \le L_{uckGrade}<359:4.108+0.003\left|L_{uckGrade}-358\right|,359 \le L_{uckGrade}<363:4.111+0.004\left|L_{uckGrade}-359\right|,363 \le L_{uckGrade}<364:4.127+0.003\left|L_{uckGrade}-363\right|,364 \le L_{uckGrade}<366:4.13+0.004\left|L_{uckGrade}-364\right|,366 \le L_{uckGrade}<367:4.138+0.003\left|L_{uckGrade}-366\right|,367 \le L_{uckGrade}<368:4.141+0.004\left|L_{uckGrade}-367\right|,368 \le L_{uckGrade}<369:4.145+0.003\left|L_{uckGrade}-368\right|,369 \le L_{uckGrade}<370:4.148+0.004\left|L_{uckGrade}-369\right|,370 \le L_{uckGrade}<371:4.152+0.003\left|L_{uckGrade}-370\right|,371 \le L_{uckGrade}<372:4.155+0.004\left|L_{uckGrade}-371\right|,372 \le L_{uckGrade}<373:4.159+0.003\left|L_{uckGrade}-372\right|,373 \le L_{uckGrade}<374:4.162+0.004\left|L_{uckGrade}-373\right|,374 \le L_{uckGrade}<375:4.166+0.003\left|L_{uckGrade}-374\right|,375 \le L_{uckGrade}<376:4.169+0.004\left|L_{uckGrade}-375\right|,376 \le L_{uckGrade}<379:4.173+0.003\left|L_{uckGrade}-376\right|,379 \le L_{uckGrade}<380:4.182+0.004\left|L_{uckGrade}-379\right|,380 \le L_{uckGrade}<383:4.186+0.003\left|L_{uckGrade}-380\right|,383 \le L_{uckGrade}<384:4.195+0.004\left|L_{uckGrade}-383\right|,384 \le L_{uckGrade}<394:4.199+0.003\left|L_{uckGrade}-384\right|,394 \le L_{uckGrade}<395:4.229+0.002\left|L_{uckGrade}-394\right|,395 \le L_{uckGrade}<399:4.231+0.003\left|L_{uckGrade}-395\right|,399 \le L_{uckGrade}<400:4.243+0.002\left|L_{uckGrade}-399\right|,400 \le L_{uckGrade}<402:4.245+0.003\left|L_{uckGrade}-400\right|,402 \le L_{uckGrade}<403:4.251+0.002\left|L_{uckGrade}-402\right|,403 \le L_{uckGrade}<405:4.253+0.003\left|L_{uckGrade}-403\right|,405 \le L_{uckGrade}<406:4.259+0.002\left|L_{uckGrade}-405\right|,406 \le L_{uckGrade}<407:4.261+0.003\left|L_{uckGrade}-406\right|,407 \le L_{uckGrade}<408:4.264+0.002\left|L_{uckGrade}-407\right|,408 \le L_{uckGrade}<409:4.266+0.003\left|L_{uckGrade}-408\right|,409 \le L_{uckGrade}<410:4.269+0.002\left|L_{uckGrade}-409\right|,410 \le L_{uckGrade}<411:4.271+0.003\left|L_{uckGrade}-410\right|,411 \le L_{uckGrade}<413:4.274+0.002\left|L_{uckGrade}-411\right|,413 \le L_{uckGrade}<414:4.278+0.003\left|L_{uckGrade}-413\right|,414 \le L_{uckGrade}<416:4.281+0.002\left|L_{uckGrade}-414\right|,416 \le L_{uckGrade}<417:4.285+0.003\left|L_{uckGrade}-416\right|,417 \le L_{uckGrade}<421:4.288+0.002\left|L_{uckGrade}-417\right|,421 \le L_{uckGrade}<422:4.296+0.003\left|L_{uckGrade}-421\right|,422 \le L_{uckGrade}<431:4.299+0.002\left|L_{uckGrade}-422\right|,431 \le L_{uckGrade}<432:4.317+0.001\left|L_{uckGrade}-431\right|,432 \le L_{uckGrade}<436:4.318+0.002\left|L_{uckGrade}-432\right|,436 \le L_{uckGrade}<437:4.326+0.001\left|L_{uckGrade}-436\right|,437 \le L_{uckGrade}<439:4.327+0.002\left|L_{uckGrade}-437\right|,439 \le L_{uckGrade}<440:4.331+0.001\left|L_{uckGrade}-439\right|,440 \le L_{uckGrade}<442:4.332+0.002\left|L_{uckGrade}-440\right|,442 \le L_{uckGrade}<443:4.336+0.001\left|L_{uckGrade}-442\right|,443 \le L_{uckGrade}<444:4.337+0.002\left|L_{uckGrade}-443\right|,444 \le L_{uckGrade}<445:4.339+0.001\left|L_{uckGrade}-444\right|,445 \le L_{uckGrade}<446:4.34+0.002\left|L_{uckGrade}-445\right|,446 \le L_{uckGrade}<447:4.342+0.001\left|L_{uckGrade}-446\right|,447 \le L_{uckGrade}<448:4.343+0.002\left|L_{uckGrade}-447\right|,448 \le L_{uckGrade}<450:4.345+0.001\left|L_{uckGrade}-448\right|,450 \le L_{uckGrade}<451:4.347+0.002\left|L_{uckGrade}-450\right|,451 \le L_{uckGrade}<453:4.349+0.001\left|L_{uckGrade}-451\right|,453 \le L_{uckGrade}<454:4.351+0.002\left|L_{uckGrade}-453\right|,454 \le L_{uckGrade}<458:4.353+0.001\left|L_{uckGrade}-454\right|,458 \le L_{uckGrade}<459:4.357+0.002\left|L_{uckGrade}-458\right|,459 \le L_{uckGrade}<467:4.359+0.001\left|L_{uckGrade}-459\right|,467 \le L_{uckGrade}<468:4.367+0\left|L_{uckGrade}-467\right|,468 \le L_{uckGrade}<473:4.367+0.001\left|L_{uckGrade}-468\right|,473 \le L_{uckGrade}<474:4.372+0\left|L_{uckGrade}-473\right|,474 \le L_{uckGrade}<476:4.372+0.001\left|L_{uckGrade}-474\right|,476 \le L_{uckGrade}<477:4.374+0\left|L_{uckGrade}-476\right|,477 \le L_{uckGrade}<479:4.374+0.001\left|L_{uckGrade}-477\right|,479 \le L_{uckGrade}<480:4.376+0\left|L_{uckGrade}-479\right|,480 \le L_{uckGrade}<481:4.376+0.001\left|L_{uckGrade}-480\right|,481 \le L_{uckGrade}<482:4.377+0\left|L_{uckGrade}-481\right|,482 \le L_{uckGrade}<483:4.377+0.001\left|L_{uckGrade}-482\right|,483 \le L_{uckGrade}<484:4.378+0\left|L_{uckGrade}-483\right|,484 \le L_{uckGrade}<485:4.378+0.001\left|L_{uckGrade}-484\right|,485 \le L_{uckGrade}<487:4.379+0\left|L_{uckGrade}-485\right|,487 \le L_{uckGrade}<488:4.379+0.001\left|L_{uckGrade}-487\right|,488 \le L_{uckGrade}<490:4.38+0\left|L_{uckGrade}-488\right|,490 \le L_{uckGrade}<491:4.38+0.001\left|L_{uckGrade}-490\right|,491 \le L_{uckGrade}<496:4.381+0\left|L_{uckGrade}-491\right|,496 \le L_{uckGrade}<497:4.381+0.001\left|L_{uckGrade}-496\right|,497 \le L_{uckGrade}<500:4.382+0\left|L_{uckGrade}-497\right|\right\}

See Example for how to use.


Probabilities from Luck

To calculate the drop rate at X Luck there are three steps.

  1. For each Luck Grade's Drop Rate apply the corresponding Luck Scalar.
  2. Find the dot product between the Luck Scalar vector at X Luck and the Base Rate.
    (This is the same as adding up each term from the first step.)
  3. For each term in the first step divide by the dot product from the second step to get the new drop rate at X Luck.

The table below is the Drop Rate table of Quest Drops.

Luck Grade Drop Rate
0 220
1 250
2 200
3 150
4 100
5 50
6 20
7 10
8 0

Every monster with a quest drop uses this Drop Rate table, however, depending on the monster's Loot Drop Table, most of the Luck Grades will be associated with dropping nothing.
And in other instances, like Dire Wolf, a Luck Grade's rate may be split between two or more Loot Drops.
This will not affect the calculations below, but they will determine an individual item's probability.


Click expand to see the calculations for 0 and 250 Luck.

Drop Rate tables generally sum to a power of ten. Since the Luck Scalars are simply 1 at 0 Luck, the probability calculation is trivial.

Using the Luck Scalars at 0 Luck, the dot product is

Luck Grade Drop Probability at 0 Luck
0
1
2
3
4
5
6
7
8


Using the Luck Scalars at 250 Luck, the dot product is

Luck Grade Drop Probability at 250 Luck
0
1
2
3
4
5
6
7
8


Using the Luck Scalars at 500 Luck, the dot product is

Luck Grade Drop Probability at 500 Luck
0
1
2
3
4
5
6
7
8

The table below is the Drop Rate table of the Gold Coin Chest.

Luck Grade Drop Rate
0 99900
1 0
2 100
3 0
4 0
5 0
6 0
7 0
8 0

The Loot Table for the Gold Coin Chest is rather simple. At Luck Grade 0 you get nothing. At Luck Grade 2 you get 1 Gold Coin Chest.

Notice that despite the Gold Coin Chest's item rarity being 7, its Luck Grade is actually 2.
Despite the being equal for most items, Item Rarity does not equal Luck Grade.


Click expand to see the calculations for 0 and 250 Luck.

Using the Luck Scalars at 0 Luck, the dot product is

Luck Grade Drop Probability at 0 Luck
0
1
2
3
4
5
6
7
8


Using the Luck Scalars at 250 Luck, the dot product is

Luck Grade Drop Probability at 250 Luck
0
1
2
3
4
5
6
7
8


Using the Luck Scalars at 500 Luck, the dot product is

Luck Grade Drop Probability at 500 Luck
0
1
2
3
4
5
6
7
8

It's worth noting that you can calculate probability at X Luck from either the Drop Rate table or the Drop Probability at 0 Luck table.
Using the Drop Probability at 0 Luck table works because the Luck Scalars are all 1 and you have to normalize regardless of using the Drop Rate or the Probability at 0 Luck.

The wiki does not display the Drop Rate tables themselves, however it does show the alternative.

How to Use Wiki Tables and Graphs

On loose loot, monster, and prop pages the wiki displays graphs and tables showcasing the effect of luck on specific luck grades and loot tables.
The meaning of these graphs can be obtuse so we will walk through an example using the graphs and (partial) tables of the Inferno Treasure Hoard.

Graphs

For each luck value "X" the graph displays the ratio between the probability of a specific luck grade at X luck over the probability of that same luck grade at 0 luck.
Not only does this visualize the effect luck has on probabilities, these ratios can be used to calculate probabilities of specific items and luck grades.

To see how probabilities at X luck are calculated see the following section: Probabilities from Luck.

Note that you can choose which luck grades are displayed by toggling the luck grade in the legend. Simply click on them to disable and enable the luck grade curve.

Table: Summaries

Loot Summaries present basic sums of probabilities in loot table grouped by rarities and item types.
They ignore properties like luck grades, however, so beware that you cannot always use the ratios in the luck effect graph to get specific probabilities for a rarity/type.

In the case of the TreasureHoardHR3, however, rarity matches luck grade one to one, so we can go between luck 0 summaries and luck 150 summaries simply by applying the proper ratios.
Applying the ratio for luck 150 to the legend rarity we get: , which matches the tables below.

Loot Summary at 0 Luck
Type
Rarity
Misc
100%
Common
15%
15.0%
Uncommon
20.5%
20.5%
Rare
45%
45.0%
Epic
17%
17.0%
Legend
2.5%
2.5%
Loot Summary at 150 Luck
Type
Rarity
Misc
100%
Common
7.48%
7.4821%
Uncommon
11.05%
11.0546%
Rare
55.25%
55.254%
Epic
22.62%
22.6247%
Legend
3.58%
3.5846%

Table: Loot Table

Loot Tables are sorted alphanumerically by item name.
These tables only display items that can drop, they won't display entries for dropping nothing.
In cases where a table can drop nothing it is best to look at the luck effect graph and loot summary to see if there are any "nothing" drops.

Loot Table
NameTypeLuck GradeLuck Grades present on the graph but missing in the column below are associated with dropping nothing.RarityItem CountProbability
Misc2Common10.5%
Misc3Uncommon10.6833%
Misc4Rare11.5%
Misc5Epic10.5667%
Misc6Legendary10.0833%
Misc2Common10.5%
Misc3Uncommon10.6833%
Misc4Rare11.5%
Misc5Epic10.5667%
Misc6Legendary10.0833%
Misc2Common10.5%
Misc3Uncommon10.6833%
Misc4Rare11.5%
Misc5Epic10.5667%
Misc6Legendary10.0833%
Misc2Common10.5%
Misc3Uncommon10.6833%
Misc4Rare11.5%
Misc5Epic10.5667%
Misc6Legendary10.0833%
...

Example: Royal Diamond at 150 Luck

Suppose we are interested in the Royal Diamond and we want to caculate what the probability is for 150 luck.
We only need three pieces of information to calculate this: the luck grade, the probability at luck 0, and the ratio at luck 150.

First, we find the luck grade of the Royal Diamond: 6.
Next, since the loot table presents probabilities at luck 0, we simply look up the probability for the Royal Diamond: 0.0833%.
And lastly, we look at the graph for luck grade 6 at luck 150: 1.43386.

Combining all of this, we find that the probability of the Royal Diamond at 150 luck becomes

Table: Drop Source Table

Drop Source Tables are displayed on item pages. For example, below is the drop source table for the Viola.

If an item has any drop source from loose loote, monsters, or props, the table will show all possible sources, otherwise it will instead say that nothing drops that item.
The table rows are sorted by total expected value per source, i.e. the sum of count * probability for each source's subrow.

Drop Source Table
NameSorted by Total Expected Value in Descending Order
Sum of all (Count * Probability)
TypeCountProbability
Loose Loot10.2778%
Monster10.1667%
Loose Loot10.0444%