From Dark and Darker Wiki

(→‎Luck Scalar: Changed Luck Grade from rarity text to number. Standardizing Luck Grades to a colored number format to avoid confusion with rarity.)
(→‎Probabilities from Luck: Updated examples for the Artifact Luck Grade. Updated tables to the new Luck Grade naming standard; i.e. using colored numbers instead of colored rarity names.)
Tag: Reverted
Line 1: Line 1:
{{MechanicsBar}}
__TOC__
Loot is rolled when you open the container or kill the mob.
Whoever opens the loot first or kills the mob first is the person whose luck is used to calculate the drops.<br>
(It is not confirmed if Bard's Unchained Harmony rolls the loot table when it opens the containers.)
Luck is capped at 500.<br>
It is possible to reach the Luck cap:
*50 from [[Bard#Perks-0|Bard's Wanderer's Luck]]
*150 luck roll from a large [[Potion of Luck]]
*10 from craftable [[Hands#Craftable_Hands_Armors-0|golden hands]] armor piece
*40 from [[Golden Cloak]]
*250 from [[Enchantments#Table_of_Enchantment_Values|max enchantment rolls]] ''on other gear''
==Loot Drop Tables and Drop Rate Tables==
Each drop instance makes use of three pieces of information: the Loot Drop table, the Drop Rate table, and the player's Luck.
Loot Drop tables list all possible items for a specific drop instance, and for each item therein it associates a Luck Grade.<br>
Drop Rate tables assign a "rate" to each Luck Grade; when normalized, these rates represent the probability of getting a drop of that Luck Grade.
Each Luck Grade's drop rate is split evenly between items that share that Luck Grade. This means that items sharing a Loot Drop table and Luck Grade, will always have the same probability of dropping.<br>
However, be aware that Monsters and Containers can have multiple Loot Drop Tables, each with their own Drop Rate table.  See [[Lich#Loot_Tables|Lich]] for example.
A Drop can be rolled more than once, but each roll is independent of the others.<br>
The Elite variant of [[Lich#Loot_Tables|Lich]] rolls their main gear Loot and Drop tables a total of {{Monster Data|Lich#Elite|Drops|Lich_Infernoboss_Elite}} times, theoretically making it possible (though ''extremely'' unlikely) to get {{Monster Data|Lich#Elite|Drops|Lich_Infernoboss_Elite}} identical Artifacts from a single [[Lich|Elite Lich]] kill.
==Luck Scalar==
[[Luck#Luck_Scalar|Luck Scalars]] are one piece of information needed to calculate drop probability at X Luck.<br>
The calculation is not a simple multiplication, so do not expect Uniques to be 4.382 times more common at 500 Luck.<br>
The true effect of Luck varies depending on Drop Rate tables.
See the [[Luck#Probabilities_from_Luck|Luck/Probabilities from Luck]] subsection for an in-depth explanation of how [[Luck#Luck_Scalar|Luck Scalars]] affect probabilities of drops.
<div style="display:inline-block; width:740px; vertical-align:top;">
'''Luck Scalar Table'''
{| cellspacing="0" style="text-align:center; text-shadow:0px 0px 4px #000; border:1px solid #FFF9; border-collapse:collapse;"
|- style="font-weight:bold; background-color:#FFF3;"
| rowspan="2" style="width:12%; border-bottom:1px solid #FFF0; border-right:1px solid #FFF9; margin-left:10px; margin-right:10px"| Luck Grade
| colspan="11"| Luck
|- style="font-weight:bold; background-color:#FFF3; border-bottom:1px solid #FFF9;"
| style="width:8%;"| 0
| style="width:8%;"| 50
| style="width:8%;"| 100
| style="width:8%;"| 150
| style="width:8%;"| 200
| style="width:8%;"| 250
| style="width:8%;"| 300
| style="width:8%;"| 350
| style="width:8%;"| 400
| style="width:8%;"| 450
| style="width:8%;"| 500
|- class="colorrarity0"
| style=" background-color:#FFF3; font-weight:bold; border-right:1px solid #FFF9;" | 0 || 1.000 || 0.950 || 0.900 || 0.850 || 0.800 || 0.750 || 0.700 || 0.650 || 0.600 || 0.550 || 0.500
|- class="colorrarity1"
| style=" background-color:#FFF3; font-weight:bold; border-right:1px solid #FFF9;" | 1 || 1.000 || 0.950 || 0.900 || 0.850 || 0.800 || 0.750 || 0.700 || 0.650 || 0.600 || 0.550 || 0.500
|- class="colorrarity2"
| style=" background-color:#FFF3; font-weight:bold; border-right:1px solid #FFF9;" | 2 || 1.000 || 0.975 || 0.950 || 0.925 || 0.900 || 0.875 || 0.850 || 0.825 || 0.800 || 0.775 || 0.750
|- class="colorrarity3"
| style=" background-color:#FFF3; font-weight:bold; border-right:1px solid #FFF9;" | 3 || 1.000 || 1.000 || 1.000 || 1.000 || 1.000 || 1.000 || 1.000 || 1.000 || 1.000 || 1.000 || 1.000
|- class="colorrarity4"
| style=" background-color:#FFF3; font-weight:bold; border-right:1px solid #FFF9;" | 4 || 1.000 || 1.476 || 1.901 || 2.277 || 2.602 || 2.878 || 3.103 || 3.279 || 3.404 || 3.480 || 3.505
|- class="colorrarity5"
| style=" background-color:#FFF3; font-weight:bold; border-right:1px solid #FFF9;" | 5 || 1.000 || 1.547 || 2.036 || 2.468 || 2.842 || 3.159 || 3.418 || 3.620 || 3.765 || 3.851 || 3.881
|- class="colorrarity6"
| style=" background-color:#FFF3; font-weight:bold; border-right:1px solid #FFF9;" | 6 || 1.000 || 1.618 || 2.171 || 2.659 || 3.083 || 3.441 || 3.734 || 3.962 || 4.125 || 4.223 || 4.257
|- class="colorrarity7"
| style=" background-color:#FFF3; font-weight:bold; border-right:1px solid #FFF9;" | 7 || 1.000 || 1.642 || 2.216 || 2.723 || 3.163 || 3.535 || 3.839 || 4.076 || 4.245 || 4.347 || 4.382
|- class="colorrarity7"
| style=" background-color:#FFF3; font-weight:bold; border-right:1px solid #FFF9;" | 8 || 1.000 || 1.642 || 2.216 || 2.723 || 3.163 || 3.535 || 3.839 || 4.076 || 4.245 || 4.347 || 4.382
|}
If the Luck Scalar Table and Graph don't cover a Scalar value you wish to see, use the [https://www.desmos.com/calculator/rvig6eeqeb desmos graph].
The desmos graph displays the LaTeX equations which are continuous curves, but keep in mind that fractional values of Luck do not exist.
</div><div style="display:inline-block; width:500px; height:410px; border-left:20px solid #0000;">
'''Luck Scalar Graph'''<tabber>
|-|0={{Stats_Data|luckgrade00}}
|-|1={{Stats_Data|luckgrade01}}
|-|2={{Stats_Data|luckgrade02}}
|-|3={{Stats_Data|luckgrade03}}
|-|4={{Stats_Data|luckgrade04}}
|-|5={{Stats_Data|luckgrade05}}
|-|6={{Stats_Data|luckgrade06}}
|-|7={{Stats_Data|luckgrade07}}
|-|8={{Stats_Data|luckgrade08}}
</tabber>
</div>
==Probabilities from Luck==
==Probabilities from Luck==
To calculate the drop rate at X Luck there are three steps.<br>
To calculate the drop rate at X Luck there are three steps.<br>
Line 105: Line 17:
|- style="background-color:#FFF4;"
|- style="background-color:#FFF4;"
|Luck Grade ||Drop Rate
|Luck Grade ||Drop Rate
|- style="color:rgb(50,50,50);"
|-
| style="background-color:#FFF4;" | <span class="colorrarity0">Junk</span> ||<span class="colorrarity0">220</span>
| style="background-color:#FFF4;" | <span class="colorrarity0">0</span> ||<span class="colorrarity0">220</span>
|- style="color:rgb(100,100,100);"
|-
| style="background-color:#FFF4;" | <span class="colorrarity1">Poor</span> ||<span class="colorrarity1">250</span>
| style="background-color:#FFF4;" | <span class="colorrarity1">1</span> ||<span class="colorrarity1">250</span>
|- style="color:rgb(222,222,222);"
|-
| style="background-color:#FFF4;" | <span class="colorrarity2">Common</span> ||<span class="colorrarity2">200</span>
| style="background-color:#FFF4;" | <span class="colorrarity2">2</span> ||<span class="colorrarity2">200</span>
|- style="color:rgb(98,190,11);"
|-
| style="background-color:#FFF4;" | <span class="colorrarity3">Uncommon</span> ||<span class="colorrarity3">150</span>
| style="background-color:#FFF4;" | <span class="colorrarity3">3</span> ||<span class="colorrarity3">150</span>
|- style="color:rgb(74,155,209);"
|-
| style="background-color:#FFF4;" | <span class="colorrarity4">Rare</span> ||<span class="colorrarity4">100</span>
| style="background-color:#FFF4;" | <span class="colorrarity4">4</span> ||<span class="colorrarity4">100</span>
|- style="color:rgb(173,90,255);"
|-
| style="background-color:#FFF4;" | <span class="colorrarity5">Epic</span> ||<span class="colorrarity5">50</span>
| style="background-color:#FFF4;" | <span class="colorrarity5">5</span> ||<span class="colorrarity5">50</span>
|- style="color:rgb(247,162,45);"
|-
| style="background-color:#FFF4;" | <span class="colorrarity6">Legendary</span> ||<span class="colorrarity6">20</span>
| style="background-color:#FFF4;" | <span class="colorrarity6">6</span> ||<span class="colorrarity6">20</span>
|- style="color:rgb(227,216,140);"
|-
| style="background-color:#FFF4;" | <span class="colorrarity7">Unique</span> ||<span class="colorrarity7">10</span>
| style="background-color:#FFF4;" | <span class="colorrarity7">7</span> ||<span class="colorrarity7">10</span>
|-
| style="background-color:#FFF4;" | <span class="colorrarity7">8</span> ||<span class="colorrarity7">0</span>
|}
|}
<br>
<br>
Line 139: Line 53:
{\color[RGB]{173, 90, 255}1.000 \cdot \textbf{50} }  +  
{\color[RGB]{173, 90, 255}1.000 \cdot \textbf{50} }  +  
{\color[RGB]{247, 162, 45}1.000 \cdot \textbf{20} }  +  
{\color[RGB]{247, 162, 45}1.000 \cdot \textbf{20} }  +  
{\color[RGB]{227, 216, 140}1.000 \cdot \textbf{10} }  = {\color{violet}1000} }}
{\color[RGB]{227, 216, 140}1.000 \cdot \textbf{10} }  +
{\color[RGB]{227, 216, 140}1.000 \cdot \textbf{0} }  = {\color{violet}1000} }}


{| cellspacing="0" class="wikitable" style="text-align:center; font-weight:bold; text-shadow:0px 0px 4px #0008;"
{| cellspacing="0" class="wikitable" style="text-align:center; font-weight:bold; text-shadow:0px 0px 4px #0008;"
Line 145: Line 60:
|Luck Grade ||Drop Probability at 0 Luck
|Luck Grade ||Drop Probability at 0 Luck
|-
|-
| style="background-color:#FFF4;" | <span class="colorrarity0">Junk</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{50, 50, 50}1.000 \cdot \textbf{220} } }{ {\color{violet}1000} }=22\%}}
| style="background-color:#FFF4;" | <span class="colorrarity0">0</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{50, 50, 50}1.000 \cdot \textbf{220} } }{ {\color{violet}1000} }=22\%}}
|-
| style="background-color:#FFF4;" | <span class="colorrarity1">1</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{100, 100, 100}1.000 \cdot \textbf{250} } }{ {\color{violet}1000} }=25\%}}
|-
|-
| style="background-color:#FFF4;" | <span class="colorrarity1">Poor</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{100, 100, 100}1.000 \cdot \textbf{250} } }{ {\color{violet}1000} }=25\%}}
| style="background-color:#FFF4;" | <span class="colorrarity2">2</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{222, 222, 222}1.000 \cdot \textbf{200} } }{ {\color{violet}1000} }=20\%}}
|-
|-
| style="background-color:#FFF4;" | <span class="colorrarity2">Common</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{222, 222, 222}1.000 \cdot \textbf{200} } }{ {\color{violet}1000} }=20\%}}
| style="background-color:#FFF4;" | <span class="colorrarity3">3</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{98, 190, 11}1.000 \cdot \textbf{150} } }{ {\color{violet}1000} }=15\%}}
|-
|-
| style="background-color:#FFF4;" | <span class="colorrarity3">Uncommon</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{98, 190, 11}1.000 \cdot \textbf{150} } }{ {\color{violet}1000} }=15\%}}
| style="background-color:#FFF4;" | <span class="colorrarity4">4</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{74, 155, 209}1.000 \cdot \textbf{100} } }{ {\color{violet}1000} }=10\%}}
|-
|-
| style="background-color:#FFF4;" | <span class="colorrarity4">Rare</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{74, 155, 209}1.000 \cdot \textbf{100} } }{ {\color{violet}1000} }=10\%}}
| style="background-color:#FFF4;" | <span class="colorrarity5">5</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{173, 90, 255}1.000 \cdot \textbf{50} } }{ {\color{violet}1000} }=5\%}}
|-
|-
| style="background-color:#FFF4;" | <span class="colorrarity5">Epic</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{173, 90, 255}1.000 \cdot \textbf{50} } }{ {\color{violet}1000} }=5\%}}
| style="background-color:#FFF4;" | <span class="colorrarity6">6</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{247, 162, 45}1.000 \cdot \textbf{20} } }{ {\color{violet}1000} }=2\%}}
|-
|-
| style="background-color:#FFF4;" | <span class="colorrarity6">Legendary</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{247, 162, 45}1.000 \cdot \textbf{20} } }{ {\color{violet}1000} }=2\%}}
| style="background-color:#FFF4;" | <span class="colorrarity7">7</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{227, 216, 140}1.000 \cdot \textbf{10} } }{ {\color{violet}1000} }=1\%}}
|-
|-
| style="background-color:#FFF4;" | <span class="colorrarity7">Unique</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{227, 216, 140}1.000 \cdot \textbf{10} } }{ {\color{violet}1000} }=1\%}}
| style="background-color:#FFF4;" | <span class="colorrarity7">8</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{227, 216, 140}1.000 \cdot \textbf{0} } }{ {\color{violet}1000} }=0\%}}
|}
|}


Line 173: Line 90:
{\color[RGB]{173, 90, 255}3.125 \cdot \textbf{50} }  +  
{\color[RGB]{173, 90, 255}3.125 \cdot \textbf{50} }  +  
{\color[RGB]{247, 162, 45}3.441 \cdot \textbf{20} }  +  
{\color[RGB]{247, 162, 45}3.441 \cdot \textbf{20} }  +  
{\color[RGB]{227, 216, 140}3.535 \cdot \textbf{10} }  = {\color{violet}1227.42} }}
{\color[RGB]{227, 216, 140}3.535 \cdot \textbf{10} }+
{\color[RGB]{227, 216, 140}3.535 \cdot \textbf{0} }  = {\color{violet}1227.42} }}


{| cellspacing="0" class="wikitable" style="text-align:center; font-weight:bold; text-shadow:0px 0px 4px #0008;"
{| cellspacing="0" class="wikitable" style="text-align:center; font-weight:bold; text-shadow:0px 0px 4px #0008;"
Line 179: Line 97:
|Luck Grade ||Drop Probability at 250 Luck
|Luck Grade ||Drop Probability at 250 Luck
|-
|-
| style="background-color:#FFF4;" | <span class="colorrarity0">Junk</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{50, 50, 50}0.750 \cdot \textbf{220} } }{ {\color{violet}1227.42} }=13.443\%}}
| style="background-color:#FFF4;" | <span class="colorrarity0">0</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{50, 50, 50}0.750 \cdot \textbf{220} } }{ {\color{violet}1227.42} }=13.443\%}}
|-
| style="background-color:#FFF4;" | <span class="colorrarity1">1</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{100, 100, 100}0.750 \cdot \textbf{250} } }{ {\color{violet}1227.42} }=15.276\%}}
|-
|-
| style="background-color:#FFF4;" | <span class="colorrarity1">Poor</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{100, 100, 100}0.750 \cdot \textbf{250} } }{ {\color{violet}1227.42} }=15.276\%}}
| style="background-color:#FFF4;" | <span class="colorrarity2">2</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{222, 222, 222}0.875 \cdot \textbf{200} } }{ {\color{violet}1227.42} }=14.258\%}}
|-
|-
| style="background-color:#FFF4;" | <span class="colorrarity2">Common</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{222, 222, 222}0.875 \cdot \textbf{200} } }{ {\color{violet}1227.42} }=14.258\%}}
| style="background-color:#FFF4;" | <span class="colorrarity3">3</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{98, 190, 11}1.000 \cdot \textbf{150} } }{ {\color{violet}1227.42} }=12.221\%}}
|-
|-
| style="background-color:#FFF4;" | <span class="colorrarity3">Uncommon</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{98, 190, 11}1.000 \cdot \textbf{150} } }{ {\color{violet}1227.42} }=12.221\%}}
| style="background-color:#FFF4;" | <span class="colorrarity4">4</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{74, 155, 209}2.878 \cdot \textbf{100} } }{ {\color{violet}1227.42} }=23.448\%}}
|-
|-
| style="background-color:#FFF4;" | <span class="colorrarity4">Rare</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{74, 155, 209}2.878 \cdot \textbf{100} } }{ {\color{violet}1227.42} }=23.448\%}}
| style="background-color:#FFF4;" | <span class="colorrarity5">5</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{173, 90, 255}3.125 \cdot \textbf{50} } }{ {\color{violet}1227.42} }=12.868\%}}
|-
|-
| style="background-color:#FFF4;" | <span class="colorrarity5">Epic</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{173, 90, 255}3.125 \cdot \textbf{50} } }{ {\color{violet}1227.42} }=12.868\%}}
| style="background-color:#FFF4;" | <span class="colorrarity6">6</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{247, 162, 45}3.441 \cdot \textbf{20} } }{ {\color{violet}1227.42} }=5.607\%}}
|-
|-
| style="background-color:#FFF4;" | <span class="colorrarity6">Legendary</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{247, 162, 45}3.441 \cdot \textbf{20} } }{ {\color{violet}1227.42} }=5.607\%}}
| style="background-color:#FFF4;" | <span class="colorrarity7">7</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{227, 216, 140}3.535 \cdot \textbf{10} } }{ {\color{violet}1227.42} }=2.880\%}}
|-
|-
| style="background-color:#FFF4;" | <span class="colorrarity7">Unique</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{227, 216, 140}3.535 \cdot \textbf{10} } }{ {\color{violet}1227.42} }=2.880\%}}
| style="background-color:#FFF4;" | <span class="colorrarity7">8</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{227, 216, 140}3.535 \cdot \textbf{0} } }{ {\color{violet}1227.42} }=0\%}}
|}
|}
</div></div>
</div></div>
<br><br>
<br>
Using the Luck Scalars at 500 Luck, the dot product is
Using the Luck Scalars at 500 Luck, the dot product is


Line 207: Line 127:
{\color[RGB]{173, 90, 255}3.881 \cdot \textbf{50} }  +  
{\color[RGB]{173, 90, 255}3.881 \cdot \textbf{50} }  +  
{\color[RGB]{247, 162, 45}4.257 \cdot \textbf{20} }  +  
{\color[RGB]{247, 162, 45}4.257 \cdot \textbf{20} }  +  
{\color[RGB]{227, 216, 140}4.382 \cdot \textbf{10} }  = {\color{violet}1208.51} }}
{\color[RGB]{227, 216, 140}4.382 \cdot \textbf{10} }  +
{\color[RGB]{227, 216, 140}4.382 \cdot \textbf{0} }  = {\color{violet}1208.51} }}


{| cellspacing="0" class="wikitable" style="text-align:center; font-weight:bold; text-shadow:0px 0px 4px #0008;"
{| cellspacing="0" class="wikitable" style="text-align:center; font-weight:bold; text-shadow:0px 0px 4px #0008;"
Line 213: Line 134:
|Luck Grade ||Drop Probability at 500 Luck
|Luck Grade ||Drop Probability at 500 Luck
|-
|-
| style="background-color:#FFF4;" | <span class="colorrarity0">Junk</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{50, 50, 50}0.500 \cdot \textbf{220} } }{ {\color{violet}1208.51} }=9.102\%}}
| style="background-color:#FFF4;" | <span class="colorrarity0">0</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{50, 50, 50}0.500 \cdot \textbf{220} } }{ {\color{violet}1208.51} }=9.102\%}}
|-
|-
| style="background-color:#FFF4;" | <span class="colorrarity1">Poor</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{100, 100, 100}0.500 \cdot \textbf{250} } }{ {\color{violet}1208.51} }=10.343\%}}
| style="background-color:#FFF4;" | <span class="colorrarity1">1</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{100, 100, 100}0.500 \cdot \textbf{250} } }{ {\color{violet}1208.51} }=10.343\%}}
|-
|-
| style="background-color:#FFF4;" | <span class="colorrarity2">Common</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{222, 222, 222}0.750 \cdot \textbf{200} } }{ {\color{violet}1208.51} }=12.412\%}}
| style="background-color:#FFF4;" | <span class="colorrarity2">2</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{222, 222, 222}0.750 \cdot \textbf{200} } }{ {\color{violet}1208.51} }=12.412\%}}
|-
|-
| style="background-color:#FFF4;" | <span class="colorrarity3">Uncommon</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{98, 190, 11}1.000 \cdot \textbf{150} } }{ {\color{violet}1208.51} }=12.412\%}}
| style="background-color:#FFF4;" | <span class="colorrarity3">3</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{98, 190, 11}1.000 \cdot \textbf{150} } }{ {\color{violet}1208.51} }=12.412\%}}
|-
|-
| style="background-color:#FFF4;" | <span class="colorrarity4">Rare</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{74, 155, 209}3.505 \cdot \textbf{100} } }{ {\color{violet}1208.51} }=29.003\%}}
| style="background-color:#FFF4;" | <span class="colorrarity4">4</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{74, 155, 209}3.505 \cdot \textbf{100} } }{ {\color{violet}1208.51} }=29.003\%}}
|-
|-
| style="background-color:#FFF4;" | <span class="colorrarity5">Epic</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{173, 90, 255}3.881 \cdot \textbf{50} } }{ {\color{violet}1208.51} }=16.057\%}}
| style="background-color:#FFF4;" | <span class="colorrarity5">5</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{173, 90, 255}3.881 \cdot \textbf{50} } }{ {\color{violet}1208.51} }=16.057\%}}
|-
|-
| style="background-color:#FFF4;" | <span class="colorrarity6">Legendary</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{247, 162, 45}4.257 \cdot \textbf{20} } }{ {\color{violet}1208.51} }=7.045\%}}
| style="background-color:#FFF4;" | <span class="colorrarity6">6</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{247, 162, 45}4.257 \cdot \textbf{20} } }{ {\color{violet}1208.51} }=7.045\%}}
|-
|-
| style="background-color:#FFF4;" | <span class="colorrarity7">Unique</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{227, 216, 140}4.382 \cdot \textbf{10} } }{ {\color{violet}1208.51} }=3.626\%}}
| style="background-color:#FFF4;" | <span class="colorrarity7">7</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{227, 216, 140}4.382 \cdot \textbf{10} } }{ {\color{violet}1208.51} }=3.626\%}}
|-
| style="background-color:#FFF4;" | <span class="colorrarity7">8</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{227, 216, 140}4.382 \cdot \textbf{0} } }{ {\color{violet}1208.51} }=0\%}}
|}
|}


Line 234: Line 157:
The table below is the Drop Rate table of the Gold Coin Chest.
The table below is the Drop Rate table of the Gold Coin Chest.


The Loot Drop table is rather simple. At Luck Grade 0, "Junk", you get nothing.  At Luck Grade 2, "Common", you get 1x Gold Coin Chest.
The Loot Drop table is rather simple. At Luck Grade 0, "0", you get nothing.  At Luck Grade 2, "2", you get 1x Gold Coin Chest.


Notice that despite the [[Gold Coin Chest]]'s item rarity being unique, its Luck Grade is actually Common.<br>
Notice that despite the [[Gold Coin Chest]]'s item rarity being 7, its Luck Grade is actually 2.<br>
Item Rarity does not equal Luck Grade, despite the two being equal for most items.
Item Rarity does not equal Luck Grade, despite the two being equal for most items.
{| cellspacing="0" class="wikitable" style="text-align:center; font-weight:bold; text-shadow:0px 0px 4px #0008;"
{| cellspacing="0" class="wikitable" style="text-align:center; font-weight:bold; text-shadow:0px 0px 4px #0008;"
Line 242: Line 165:
|Luck Grade ||Drop Rate
|Luck Grade ||Drop Rate
|-
|-
| style="background-color:#FFF4;" | <span class="colorrarity0">Junk</span> ||<span class="colorrarity0">99900</span>
| style="background-color:#FFF4;" | <span class="colorrarity0">0</span> ||<span class="colorrarity0">99900</span>
|-
| style="background-color:#FFF4;" | <span class="colorrarity1">1</span> ||<span class="colorrarity1">0</span>
|-
|-
| style="background-color:#FFF4;" | <span class="colorrarity1">Poor</span> ||<span class="colorrarity1">0</span>
| style="background-color:#FFF4;" | <span class="colorrarity2">2</span> ||<span class="colorrarity2">100</span>
|-
|-
| style="background-color:#FFF4;" | <span class="colorrarity2">Common</span> ||<span class="colorrarity2">100</span>
| style="background-color:#FFF4;" | <span class="colorrarity3">3</span> ||<span class="colorrarity3">0</span>
|-
|-
| style="background-color:#FFF4;" | <span class="colorrarity3">Uncommon</span> ||<span class="colorrarity3">0</span>
| style="background-color:#FFF4;" | <span class="colorrarity4">4</span> ||<span class="colorrarity4">0</span>
|-
|-
| style="background-color:#FFF4;" | <span class="colorrarity4">Rare</span> ||<span class="colorrarity4">0</span>
| style="background-color:#FFF4;" | <span class="colorrarity5">5</span> ||<span class="colorrarity5">0</span>
|-
|-
| style="background-color:#FFF4;" | <span class="colorrarity5">Epic</span> ||<span class="colorrarity5">0</span>
| style="background-color:#FFF4;" | <span class="colorrarity6">6</span> ||<span class="colorrarity6">0</span>
|-
|-
| style="background-color:#FFF4;" | <span class="colorrarity6">Legendary</span> ||<span class="colorrarity6">0</span>
| style="background-color:#FFF4;" | <span class="colorrarity7">7</span> ||<span class="colorrarity7">0</span>
|-
|-
| style="background-color:#FFF4;" | <span class="colorrarity7">Unique</span> ||<span class="colorrarity7">0</span>
| style="background-color:#FFF4;" | <span class="colorrarity7">8</span> ||<span class="colorrarity7">0</span>
|}
|}
<br>
<br>
<p style="font-size:18px; width:fit-content; border:1px solid #DD952A; border-radius:15px; padding:7px;">Click expand to see the calculations for 0 and 250 Luck.<p>
<p style="font-size:18px; width:fit-content; border:1px solid #DD952A; border-radius:15px; padding:7px;">Click expand to see the calculations for 0 and 250 Luck.<p>
Line 273: Line 199:
{\color[RGB]{173, 90, 255}1.000 \cdot \textbf{0} }  +  
{\color[RGB]{173, 90, 255}1.000 \cdot \textbf{0} }  +  
{\color[RGB]{247, 162, 45}1.000 \cdot \textbf{0} }  +  
{\color[RGB]{247, 162, 45}1.000 \cdot \textbf{0} }  +  
{\color[RGB]{227, 216, 140}1.000 \cdot \textbf{0} }  +
{\color[RGB]{227, 216, 140}1.000 \cdot \textbf{0} }  = {\color{violet}100000} }}
{\color[RGB]{227, 216, 140}1.000 \cdot \textbf{0} }  = {\color{violet}100000} }}


Line 279: Line 206:
|Luck Grade ||Drop Probability at 0 Luck
|Luck Grade ||Drop Probability at 0 Luck
|-
|-
| style="background-color:#FFF4;" | <span class="colorrarity0">Junk</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{50, 50, 50}1.000 \cdot \textbf{99900} } }{ {\color{violet}100000} }=99.9\%}}
| style="background-color:#FFF4;" | <span class="colorrarity0">0</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{50, 50, 50}1.000 \cdot \textbf{99900} } }{ {\color{violet}100000} }=99.9\%}}
|-
|-
| style="background-color:#FFF4;" | <span class="colorrarity1">Poor</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{100, 100, 100}1.000 \cdot \textbf{0} } }{ {\color{violet}100000} }=0\%}}
| style="background-color:#FFF4;" | <span class="colorrarity1">1</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{100, 100, 100}1.000 \cdot \textbf{0} } }{ {\color{violet}100000} }=0\%}}
|-
|-
| style="background-color:#FFF4;" | <span class="colorrarity2">Common</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{222, 222, 222}1.000 \cdot \textbf{100} } }{ {\color{violet}100000} }=0.1\%}}
| style="background-color:#FFF4;" | <span class="colorrarity2">2</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{222, 222, 222}1.000 \cdot \textbf{100} } }{ {\color{violet}100000} }=0.1\%}}
|-
|-
| style="background-color:#FFF4;" | <span class="colorrarity3">Uncommon</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{98, 190, 11}1.000 \cdot \textbf{0} } }{ {\color{violet}100000} }=0\%}}
| style="background-color:#FFF4;" | <span class="colorrarity3">3</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{98, 190, 11}1.000 \cdot \textbf{0} } }{ {\color{violet}100000} }=0\%}}
|-
|-
| style="background-color:#FFF4;" | <span class="colorrarity4">Rare</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{74, 155, 209}1.000 \cdot \textbf{0} } }{ {\color{violet}100000} }=0\%}}
| style="background-color:#FFF4;" | <span class="colorrarity4">4</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{74, 155, 209}1.000 \cdot \textbf{0} } }{ {\color{violet}100000} }=0\%}}
|-
|-
| style="background-color:#FFF4;" | <span class="colorrarity5">Epic</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{173, 90, 255}1.000 \cdot \textbf{0} } }{ {\color{violet}100000} }=0\%}}
| style="background-color:#FFF4;" | <span class="colorrarity5">5</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{173, 90, 255}1.000 \cdot \textbf{0} } }{ {\color{violet}100000} }=0\%}}
|-
|-
| style="background-color:#FFF4;" | <span class="colorrarity6">Legendary</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{247, 162, 45}1.000 \cdot \textbf{0} } }{ {\color{violet}100000} }=0\%}}
| style="background-color:#FFF4;" | <span class="colorrarity6">6</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{247, 162, 45}1.000 \cdot \textbf{0} } }{ {\color{violet}100000} }=0\%}}
|-
|-
| style="background-color:#FFF4;" | <span class="colorrarity7">Unique</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{227, 216, 140}1.000 \cdot \textbf{0} } }{ {\color{violet}100000} }=0\%}}
| style="background-color:#FFF4;" | <span class="colorrarity7">7</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{227, 216, 140}1.000 \cdot \textbf{0} } }{ {\color{violet}100000} }=0\%}}
|-
| style="background-color:#FFF4;" | <span class="colorrarity7">8</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{227, 216, 140}1.000 \cdot \textbf{0} } }{ {\color{violet}100000} }=0\%}}
|}
|}


Line 306: Line 235:
{\color[RGB]{173, 90, 255}3.159 \cdot \textbf{0} }  +  
{\color[RGB]{173, 90, 255}3.159 \cdot \textbf{0} }  +  
{\color[RGB]{247, 162, 45}3.441 \cdot \textbf{0} }  +  
{\color[RGB]{247, 162, 45}3.441 \cdot \textbf{0} }  +  
{\color[RGB]{227, 216, 140}3.535 \cdot \textbf{0} }  +
{\color[RGB]{227, 216, 140}3.535 \cdot \textbf{0} }  = {\color{violet}75012.5} }}
{\color[RGB]{227, 216, 140}3.535 \cdot \textbf{0} }  = {\color{violet}75012.5} }}


Line 312: Line 242:
|Luck Grade ||Drop Probability at 250 Luck
|Luck Grade ||Drop Probability at 250 Luck
|-
|-
| style="background-color:#FFF4;" | <span class="colorrarity0">Junk</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{50, 50, 50}0.750 \cdot \textbf{99900} } }{ {\color{violet}75012.5} }=99.883\%}}
| style="background-color:#FFF4;" | <span class="colorrarity0">0</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{50, 50, 50}0.750 \cdot \textbf{99900} } }{ {\color{violet}75012.5} }=99.883\%}}
|-
|-
| style="background-color:#FFF4;" | <span class="colorrarity1">Poor</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{100, 100, 100}0.750 \cdot \textbf{0} } }{ {\color{violet}75012.5} }=0\%}}
| style="background-color:#FFF4;" | <span class="colorrarity1">1</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{100, 100, 100}0.750 \cdot \textbf{0} } }{ {\color{violet}75012.5} }=0\%}}
|-
|-
| style="background-color:#FFF4;" | <span class="colorrarity2">Common</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{222, 222, 222}0.875 \cdot \textbf{100} } }{ {\color{violet}75012.5} }=0.117\%}}
| style="background-color:#FFF4;" | <span class="colorrarity2">2</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{222, 222, 222}0.875 \cdot \textbf{100} } }{ {\color{violet}75012.5} }=0.117\%}}
|-
|-
| style="background-color:#FFF4;" | <span class="colorrarity3">Uncommon</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{98, 190, 11}1.000 \cdot \textbf{0} } }{ {\color{violet}75012.5} }=0\%}}
| style="background-color:#FFF4;" | <span class="colorrarity3">3</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{98, 190, 11}1.000 \cdot \textbf{0} } }{ {\color{violet}75012.5} }=0\%}}
|-
|-
| style="background-color:#FFF4;" | <span class="colorrarity4">Rare</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{74, 155, 209}2.878 \cdot \textbf{0} } }{ {\color{violet}75012.5} }=0\%}}
| style="background-color:#FFF4;" | <span class="colorrarity4">4</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{74, 155, 209}2.878 \cdot \textbf{0} } }{ {\color{violet}75012.5} }=0\%}}
|-
|-
| style="background-color:#FFF4;" | <span class="colorrarity5">Epic</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{173, 90, 255}3.159 \cdot \textbf{0} } }{ {\color{violet}75012.5} }=0\%}}
| style="background-color:#FFF4;" | <span class="colorrarity5">5</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{173, 90, 255}3.159 \cdot \textbf{0} } }{ {\color{violet}75012.5} }=0\%}}
|-
|-
| style="background-color:#FFF4;" | <span class="colorrarity6">Legendary</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{247, 162, 45}3.441 \cdot \textbf{0} } }{ {\color{violet}75012.5} }=0\%}}
| style="background-color:#FFF4;" | <span class="colorrarity6">6</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{247, 162, 45}3.441 \cdot \textbf{0} } }{ {\color{violet}75012.5} }=0\%}}
|-
|-
| style="background-color:#FFF4;" | <span class="colorrarity7">Unique</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{227, 216, 140}3.535 \cdot \textbf{0} } }{ {\color{violet}75012.5} }=0\%}}
| style="background-color:#FFF4;" | <span class="colorrarity7">7</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{227, 216, 140}3.535 \cdot \textbf{0} } }{ {\color{violet}75012.5} }=0\%}}
|-
| style="background-color:#FFF4;" | <span class="colorrarity7">8</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{227, 216, 140}3.535 \cdot \textbf{0} } }{ {\color{violet}75012.5} }=0\%}}
|}
|}
</div></div>
</div></div>
<br><br>
<br>
Using the Luck Scalars at 500 Luck, the dot product is
Using the Luck Scalars at 500 Luck, the dot product is


Line 340: Line 272:
{\color[RGB]{173, 90, 255}3.881 \cdot \textbf{0} }  +  
{\color[RGB]{173, 90, 255}3.881 \cdot \textbf{0} }  +  
{\color[RGB]{247, 162, 45}4.257 \cdot \textbf{0} }  +  
{\color[RGB]{247, 162, 45}4.257 \cdot \textbf{0} }  +  
{\color[RGB]{227, 216, 140}4.382 \cdot \textbf{0} }  +
{\color[RGB]{227, 216, 140}4.382 \cdot \textbf{0} }  = {\color{violet}50025} }}
{\color[RGB]{227, 216, 140}4.382 \cdot \textbf{0} }  = {\color{violet}50025} }}


Line 346: Line 279:
|Luck Grade ||Drop Probability at 500 Luck
|Luck Grade ||Drop Probability at 500 Luck
|-
|-
| style="background-color:#FFF4;" | <span class="colorrarity0">Junk</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{50, 50, 50}0.500 \cdot \textbf{99900} } }{ {\color{violet}50025} }=99.850\%}}
| style="background-color:#FFF4;" | <span class="colorrarity0">0</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{50, 50, 50}0.500 \cdot \textbf{99900} } }{ {\color{violet}50025} }=99.850\%}}
|-
| style="background-color:#FFF4;" | <span class="colorrarity1">1</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{100, 100, 100}0.500 \cdot \textbf{0} } }{ {\color{violet}50025} }=0\%}}
|-
|-
| style="background-color:#FFF4;" | <span class="colorrarity1">Poor</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{100, 100, 100}0.500 \cdot \textbf{0} } }{ {\color{violet}50025} }=0\%}}
| style="background-color:#FFF4;" | <span class="colorrarity2">2</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{222, 222, 222}0.750 \cdot \textbf{100} } }{ {\color{violet}50025} }=0.150\%}}
|-
|-
| style="background-color:#FFF4;" | <span class="colorrarity2">Common</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{222, 222, 222}0.750 \cdot \textbf{100} } }{ {\color{violet}50025} }=0.150\%}}
| style="background-color:#FFF4;" | <span class="colorrarity3">3</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{98, 190, 11}1.000 \cdot \textbf{0} } }{ {\color{violet}50025} }=0\%}}
|-
|-
| style="background-color:#FFF4;" | <span class="colorrarity3">Uncommon</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{98, 190, 11}1.000 \cdot \textbf{0} } }{ {\color{violet}50025} }=0\%}}
| style="background-color:#FFF4;" | <span class="colorrarity4">4</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{74, 155, 209}3.505 \cdot \textbf{0} } }{ {\color{violet}50025} }=0\%}}
|-
|-
| style="background-color:#FFF4;" | <span class="colorrarity4">Rare</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{74, 155, 209}3.505 \cdot \textbf{0} } }{ {\color{violet}50025} }=0\%}}
| style="background-color:#FFF4;" | <span class="colorrarity5">5</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{173, 90, 255}3.881 \cdot \textbf{0} } }{ {\color{violet}50025} }=0\%}}
|-
|-
| style="background-color:#FFF4;" | <span class="colorrarity5">Epic</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{173, 90, 255}3.881 \cdot \textbf{0} } }{ {\color{violet}50025} }=0\%}}
| style="background-color:#FFF4;" | <span class="colorrarity6">6</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{247, 162, 45}4.257 \cdot \textbf{0} } }{ {\color{violet}50025} }=0\%}}
|-
|-
| style="background-color:#FFF4;" | <span class="colorrarity6">Legendary</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{247, 162, 45}4.257 \cdot \textbf{0} } }{ {\color{violet}50025} }=0\%}}
| style="background-color:#FFF4;" | <span class="colorrarity7">7</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{227, 216, 140}4.382 \cdot \textbf{0} } }{ {\color{violet}50025} }=0\%}}
|-
|-
| style="background-color:#FFF4;" | <span class="colorrarity7">Unique</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{227, 216, 140}4.382 \cdot \textbf{0} } }{ {\color{violet}50025} }=0\%}}
| style="background-color:#FFF4;" | <span class="colorrarity7">8</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{227, 216, 140}4.382 \cdot \textbf{0} } }{ {\color{violet}50025} }=0\%}}
|}
|}
</tabber>
</tabber>

Revision as of 23:08, 18 June 2024

Probabilities from Luck

To calculate the drop rate at X Luck there are three steps.

  1. For each Luck Grade's Drop Rate apply the corresponding Luck Scalar.
  2. Find the dot product between the Luck Scalar vector at X Luck and the Base Rate.
    (This is the same as adding up each term from the first step.)
  3. For each term in the first step divide by the dot product from the second step to get the new drop rate at X Luck.

The table below is the Drop Rate table of Quest Drops.

Every monster with a quest drop uses the Drop Rate table.
However, depending on the monster's Loot Drop Table, many of the Luck Grade rates will be associated with dropping nothing.

And in other instances, like Demon Centaur, a Luck Grade's rate may be split between two Loot Drops.
This will not affect the calculations below, but they will determine an individual item's probability.

Luck Grade Drop Rate
0 220
1 250
2 200
3 150
4 100
5 50
6 20
7 10
8 0


Click expand to see the calculations for 0 and 250 Luck.

Drop Rate tables generally sum to a power of ten. Since the Luck Scalars are simply 1 at 0 Luck, the probability calculation is trivial.

Using the Luck Scalars at 0 Luck, the dot product is

Luck Grade Drop Probability at 0 Luck
0
1
2
3
4
5
6
7
8


Using the Luck Scalars at 250 Luck, the dot product is

Luck Grade Drop Probability at 250 Luck
0
1
2
3
4
5
6
7
8


Using the Luck Scalars at 500 Luck, the dot product is

Luck Grade Drop Probability at 500 Luck
0
1
2
3
4
5
6
7
8

The table below is the Drop Rate table of the Gold Coin Chest.

The Loot Drop table is rather simple. At Luck Grade 0, "0", you get nothing. At Luck Grade 2, "2", you get 1x Gold Coin Chest.

Notice that despite the Gold Coin Chest's item rarity being 7, its Luck Grade is actually 2.
Item Rarity does not equal Luck Grade, despite the two being equal for most items.

Luck Grade Drop Rate
0 99900
1 0
2 100
3 0
4 0
5 0
6 0
7 0
8 0


Click expand to see the calculations for 0 and 250 Luck.

Using the Luck Scalars at 0 Luck, the dot product is

Luck Grade Drop Probability at 0 Luck
0
1
2
3
4
5
6
7
8

Using the Luck Scalars at 250 Luck, the dot product is

Luck Grade Drop Probability at 250 Luck
0
1
2
3
4
5
6
7
8


Using the Luck Scalars at 500 Luck, the dot product is

Luck Grade Drop Probability at 500 Luck
0
1
2
3
4
5
6
7
8

It's worth noting that you can calculate probability at X Luck from either the Drop Rate table or the Drop Probability at 0 Luck table.
Using the Drop Probability at 0 Luck table works because the Luck Scalars are all 1 and you have to normalize regardless of using the Drop Rate or the Probability at 0 Luck.

The wiki does not display the Drop Rate tables themselves, however it does show the alternative.