|
|
Line 1: |
Line 1: |
| #redirect [[Stats#Luck]] | | Loot is rolled when you open the container or kill the mob. |
| | |
| | Whoever opens the loot first or kills the mob first is the person whose luck is used to calculate the drops.<br> |
| | (It is not confirmed if Bard's Unchained Harmony rolls the loot table when it opens the containers.) |
| | |
| | Luck is capped at 500.<br> |
| | It is possible to get maximum of 450 Luck in the game currently: |
| | *50 from [[Bard#Perks-0|Bard's Wanderer's Luck]] |
| | *150 luck roll from a large [[Potion of Luck]] |
| | *10 from craftable [[Hands#Craftable_Hands_Armors-0|golden hands]] armor piece |
| | *40 from [[Golden Cloak]] |
| | *200 from [[Enchantments#Table_of_Enchantment_Values|max enchantment rolls]] ''on other gear'' |
| | |
| | ===Loot Drop Tables and Drop Rate Tables=== |
| | |
| | Each drop instance makes use of three pieces of information: the Loot Drop table, the Drop Rate table, and the player's Luck. |
| | |
| | Loot Drop tables list all possible items for a specific drop instance, and for each item therein it associates a Luck Grade.<br> |
| | Drop Rate tables assign a "rate" to each Luck Grade; when normalized, these rates represent the probability of getting a drop of that Luck Grade. |
| | |
| | Each Luck Grade's drop rate is split evenly between items that share that Luck Grade. This means that items sharing a Loot Drop table and Luck Grade, will always have the same probability of dropping.<br> |
| | However, be aware that Monsters and Containers can have multiple Loot Drop Tables, each with their own Drop Rate table. See [[Lich#Loot_Tables|Lich]] for example. |
| | |
| | A Drop can be rolled more than once, but each roll is independent of the others.<br> |
| | Lich rolls their gear Loot and Drop tables twice, theoretically making it possible (though extremely unlikely) to get two Artifacts from a single HR Lich kill. |
| | |
| | ===Luck Scalar=== |
| | Luck Scalars are one piece of information needed to calculate drop probability at X Luck.<br> |
| | The calculation is not a simple multiplication, so do not expect Uniques to be 4.382 times more common at 500 Luck.<br> |
| | The true effect of Luck varies depending on Drop Rate tables and Loot Drop tables. |
| | |
| | <div style="display:inline-block; width:740px; vertical-align:top;"> |
| | '''Luck Scalar Table''' |
| | {| cellspacing="0" style="text-align:center; text-shadow:0px 0px 4px #000; border:1px solid #FFF9; border-collapse:collapse;" |
| | |- style="font-weight:bold; background-color:#FFF3; border-bottom:1px solid #FFF9;" |
| | | Luck |
| | | style="width:8%;"| 0 |
| | | style="width:8%;"| 50 |
| | | style="width:8%;"| 100 |
| | | style="width:8%;"| 150 |
| | | style="width:8%;"| 200 |
| | | style="width:8%;"| 250 |
| | | style="width:8%;"| 300 |
| | | style="width:8%;"| 350 |
| | | style="width:8%;"| 400 |
| | | style="width:8%;"| 450 |
| | | style="width:8%;"| 500 |
| | |- class="colorrarity0" |
| | | style=" background-color:#FFF3; font-weight:bold; border-right:1px solid #FFF9;" | Junk || 1.000 || 0.950 || 0.900 || 0.850 || 0.800 || 0.750 || 0.700 || 0.650 || 0.600 || 0.550 || 0.500 |
| | |- class="colorrarity1" |
| | | style=" background-color:#FFF3; font-weight:bold; border-right:1px solid #FFF9;" | Poor || 1.000 || 0.950 || 0.900 || 0.850 || 0.800 || 0.750 || 0.700 || 0.650 || 0.600 || 0.550 || 0.500 |
| | |- class="colorrarity2" |
| | | style=" background-color:#FFF3; font-weight:bold; border-right:1px solid #FFF9;" | Common || 1.000 || 0.975 || 0.950 || 0.925 || 0.900 || 0.875 || 0.850 || 0.825 || 0.800 || 0.775 || 0.750 |
| | |- class="colorrarity3" |
| | | style=" background-color:#FFF3; font-weight:bold; border-right:1px solid #FFF9;" | Uncommon || 1.000 || 1.000 || 1.000 || 1.000 || 1.000 || 1.000 || 1.000 || 1.000 || 1.000 || 1.000 || 1.000 |
| | |- class="colorrarity4" |
| | | style=" background-color:#FFF3; font-weight:bold; border-right:1px solid #FFF9;" | Rare || 1.000 || 1.476 || 1.901 || 2.277 || 2.602 || 2.878 || 3.103 || 3.279 || 3.404 || 3.480 || 3.505 |
| | |- class="colorrarity5" |
| | | style=" background-color:#FFF3; font-weight:bold; border-right:1px solid #FFF9;" | Epic || 1.000 || 1.547 || 2.036 || 2.468 || 2.842 || 3.159 || 3.418 || 3.620 || 3.765 || 3.751 || 3.881 |
| | |- class="colorrarity6" |
| | | style=" background-color:#FFF3; font-weight:bold; border-right:1px solid #FFF9;" | Legendary || 1.000 || 1.618 || 2.171 || 2.659 || 3.083 || 3.441 || 3.734 || 3.962 || 4.125 || 4.223 || 4.257 |
| | |- class="colorrarity7" |
| | | style=" background-color:#FFF3; font-weight:bold; border-right:1px solid #FFF9;" | Unique || 1.000 || 1.642 || 2.216 || 2.723 || 3.163 || 3.535 || 3.839 || 4.076 || 4.245 || 4.347 || 4.382 |
| | |} |
| | |
| | If the Luck Scalar Table and Graph don't cover a Scalar value you wish to see, use the [https://www.desmos.com/calculator/bjmdlsym5d desmos graph]. |
| | The desmos graph displays the LaTeX equations which are continuous curves, but keep in mind that fractional values of Luck do not exist. |
| | </div><div style="display:inline-block; width:500px; height:410px; border-left:20px solid #0000;"> |
| | '''Luck Scalar Graph''' |
| | <tabber> |
| | |-|0= |
| | {{Stats_Data|luckgrade00}} |
| | |
| | |-|1= |
| | {{Stats_Data|luckgrade01}} |
| | |
| | |-|2= |
| | {{Stats_Data|luckgrade02}} |
| | |
| | |-|3= |
| | {{Stats_Data|luckgrade03}} |
| | |
| | |-|4= |
| | {{Stats_Data|luckgrade04}} |
| | |
| | |-|5= |
| | {{Stats_Data|luckgrade05}} |
| | |
| | |-|6= |
| | {{Stats_Data|luckgrade06}} |
| | |
| | |-|7= |
| | {{Stats_Data|luckgrade07}} |
| | </tabber> |
| | </div> |
| | |
| | ===Probabilities from Luck=== |
| | To calculate the drop rate at X Luck there are three steps.<br> |
| | # For each Luck Grade's Drop Rate apply the corresponding Luck Scalar.<br> |
| | # Find the dot product between the Luck Scalar vector at X Luck and the Base Rate.<br>(This is the same as adding up each term from the first step.)<br> |
| | # For each term in the first step divide by the dot product from the second step to get the new drop rate at X Luck. |
| | <tabber> |
| | |-|Quest Drop Example= |
| | The table below is the Drop Rate table of Quest Drops. |
| | |
| | Every monster with a quest drop uses the Drop Rate table.<br> |
| | However, depending on the monster's Loot Drop Table, many of the Luck Grade rates will be associated with dropping nothing. |
| | |
| | And in other instances, like [[Demon_Centaur#250-1|Demon Centaur]], a Luck Grade's rate may be split between two Loot Drops.<br> |
| | This will not affect the calculations below, but they will determine an individual item's probability. |
| | |
| | {| cellspacing="0" class="wikitable" style="text-align:center; font-weight:bold; text-shadow:0px 0px 4px #0008;" |
| | |- style="background-color:#FFF4;" |
| | |Luck Grade ||Drop Rate |
| | |- style="color:rgb(50,50,50);" |
| | | style="background-color:#FFF4;" | <span class="colorrarity0">Junk</span> ||<span class="colorrarity0">220</span> |
| | |- style="color:rgb(100,100,100);" |
| | | style="background-color:#FFF4;" | <span class="colorrarity1">Poor</span> ||<span class="colorrarity1">250</span> |
| | |- style="color:rgb(222,222,222);" |
| | | style="background-color:#FFF4;" | <span class="colorrarity2">Common</span> ||<span class="colorrarity2">200</span> |
| | |- style="color:rgb(98,190,11);" |
| | | style="background-color:#FFF4;" | <span class="colorrarity3">Uncommon</span> ||<span class="colorrarity3">150</span> |
| | |- style="color:rgb(74,155,209);" |
| | | style="background-color:#FFF4;" | <span class="colorrarity4">Rare</span> ||<span class="colorrarity4">100</span> |
| | |- style="color:rgb(173,90,255);" |
| | | style="background-color:#FFF4;" | <span class="colorrarity5">Epic</span> ||<span class="colorrarity5">50</span> |
| | |- style="color:rgb(247,162,45);" |
| | | style="background-color:#FFF4;" | <span class="colorrarity6">Legendary</span> ||<span class="colorrarity6">20</span> |
| | |- style="color:rgb(227,216,140);" |
| | | style="background-color:#FFF4;" | <span class="colorrarity7">Unique</span> ||<span class="colorrarity7">10</span> |
| | |} |
| | <br> |
| | <p style="font-size:18px; width:fit-content; border:1px solid #DD952A; border-radius:15px; padding:7px;">Click expand to see the calculations for 0 and 250 Luck.<p> |
| | |
| | <div class="mw-collapsible mw-collapsed" style="width: fit-content"> |
| | <div class="mw-collapsible-content"> |
| | Drop Rate tables generally sum to a power of ten. Since the Luck Scalars are simply 1 at 0 Luck, the probability calculation is trivial. |
| | |
| | Using the Luck Scalars at 0 Luck, the dot product is |
| | |
| | {{#tag:math|\color{White} |
| | {\color[RGB]{50, 50, 50}1.000 \cdot \textbf{220} } + |
| | {\color[RGB]{100, 100, 100}1.000 \cdot \textbf{250} } + |
| | {\color[RGB]{222, 222, 222}1.000 \cdot \textbf{200} } + |
| | {\color[RGB]{98, 190, 11}1.000 \cdot \textbf{150} } + |
| | {\color[RGB]{74, 155, 209}1.000 \cdot \textbf{100} } + |
| | {\color[RGB]{173, 90, 255}1.000 \cdot \textbf{50} } + |
| | {\color[RGB]{247, 162, 45}1.000 \cdot \textbf{20} } + |
| | {\color[RGB]{227, 216, 140}1.000 \cdot \textbf{10} } = {\color{violet}1000} }} |
| | |
| | {| cellspacing="0" class="wikitable" style="text-align:center; font-weight:bold; text-shadow:0px 0px 4px #0008;" |
| | |- style="background-color:#FFF4;" |
| | |Luck Grade ||Drop Probability at 0 Luck |
| | |- |
| | | style="background-color:#FFF4;" | <span class="colorrarity0">Junk</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{50, 50, 50}1.000 \cdot \textbf{220} } }{ {\color{violet}1000} }=22\%}} |
| | |- |
| | | style="background-color:#FFF4;" | <span class="colorrarity1">Poor</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{100, 100, 100}1.000 \cdot \textbf{250} } }{ {\color{violet}1000} }=25\%}} |
| | |- |
| | | style="background-color:#FFF4;" | <span class="colorrarity2">Common</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{222, 222, 222}1.000 \cdot \textbf{200} } }{ {\color{violet}1000} }=20\%}} |
| | |- |
| | | style="background-color:#FFF4;" | <span class="colorrarity3">Uncommon</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{98, 190, 11}1.000 \cdot \textbf{150} } }{ {\color{violet}1000} }=15\%}} |
| | |- |
| | | style="background-color:#FFF4;" | <span class="colorrarity4">Rare</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{74, 155, 209}1.000 \cdot \textbf{100} } }{ {\color{violet}1000} }=10\%}} |
| | |- |
| | | style="background-color:#FFF4;" | <span class="colorrarity5">Epic</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{173, 90, 255}1.000 \cdot \textbf{50} } }{ {\color{violet}1000} }=5\%}} |
| | |- |
| | | style="background-color:#FFF4;" | <span class="colorrarity6">Legendary</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{247, 162, 45}1.000 \cdot \textbf{20} } }{ {\color{violet}1000} }=2\%}} |
| | |- |
| | | style="background-color:#FFF4;" | <span class="colorrarity7">Unique</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{227, 216, 140}1.000 \cdot \textbf{10} } }{ {\color{violet}1000} }=1\%}} |
| | |} |
| | |
| | <br> |
| | Using the Luck Scalars at 250 Luck, the dot product is |
| | |
| | {{#tag:math|\color{White} |
| | {\color[RGB]{50, 50, 50}0.750 \cdot \textbf{220} } + |
| | {\color[RGB]{100, 100, 100}0.750 \cdot \textbf{250} } + |
| | {\color[RGB]{222, 222, 222}0.875 \cdot \textbf{200} } + |
| | {\color[RGB]{98, 190, 11}1.000 \cdot \textbf{150} } + |
| | {\color[RGB]{74, 155, 209}2.878 \cdot \textbf{100} } + |
| | {\color[RGB]{173, 90, 255}3.125 \cdot \textbf{50} } + |
| | {\color[RGB]{247, 162, 45}3.441 \cdot \textbf{20} } + |
| | {\color[RGB]{227, 216, 140}3.535 \cdot \textbf{10} } = {\color{violet}1227.42} }} |
| | |
| | {| cellspacing="0" class="wikitable" style="text-align:center; font-weight:bold; text-shadow:0px 0px 4px #0008;" |
| | |- style="background-color:#FFF4;" |
| | |Luck Grade ||Drop Probability at 250 Luck |
| | |- |
| | | style="background-color:#FFF4;" | <span class="colorrarity0">Junk</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{50, 50, 50}0.750 \cdot \textbf{220} } }{ {\color{violet}1227.42} }=13.443\%}} |
| | |- |
| | | style="background-color:#FFF4;" | <span class="colorrarity1">Poor</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{100, 100, 100}0.750 \cdot \textbf{250} } }{ {\color{violet}1227.42} }=15.276\%}} |
| | |- |
| | | style="background-color:#FFF4;" | <span class="colorrarity2">Common</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{222, 222, 222}0.875 \cdot \textbf{200} } }{ {\color{violet}1227.42} }=14.258\%}} |
| | |- |
| | | style="background-color:#FFF4;" | <span class="colorrarity3">Uncommon</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{98, 190, 11}1.000 \cdot \textbf{150} } }{ {\color{violet}1227.42} }=12.221\%}} |
| | |- |
| | | style="background-color:#FFF4;" | <span class="colorrarity4">Rare</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{74, 155, 209}2.878 \cdot \textbf{100} } }{ {\color{violet}1227.42} }=23.448\%}} |
| | |- |
| | | style="background-color:#FFF4;" | <span class="colorrarity5">Epic</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{173, 90, 255}3.125 \cdot \textbf{50} } }{ {\color{violet}1227.42} }=12.868\%}} |
| | |- |
| | | style="background-color:#FFF4;" | <span class="colorrarity6">Legendary</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{247, 162, 45}3.441 \cdot \textbf{20} } }{ {\color{violet}1227.42} }=5.607\%}} |
| | |- |
| | | style="background-color:#FFF4;" | <span class="colorrarity7">Unique</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{227, 216, 140}3.535 \cdot \textbf{10} } }{ {\color{violet}1227.42} }=2.880\%}} |
| | |} |
| | </div></div> |
| | <br><br> |
| | Using the Luck Scalars at 500 Luck, the dot product is |
| | |
| | {{#tag:math|\color{White} |
| | {\color[RGB]{50, 50, 50}0.500 \cdot \textbf{220} } + |
| | {\color[RGB]{100, 100, 100}0.500 \cdot \textbf{250} } + |
| | {\color[RGB]{222, 222, 222}0.750 \cdot \textbf{200} } + |
| | {\color[RGB]{98, 190, 11}1.000 \cdot \textbf{150} } + |
| | {\color[RGB]{74, 155, 209}3.505 \cdot \textbf{100} } + |
| | {\color[RGB]{173, 90, 255}3.881 \cdot \textbf{50} } + |
| | {\color[RGB]{247, 162, 45}4.257 \cdot \textbf{20} } + |
| | {\color[RGB]{227, 216, 140}4.382 \cdot \textbf{10} } = {\color{violet}1208.51} }} |
| | |
| | {| cellspacing="0" class="wikitable" style="text-align:center; font-weight:bold; text-shadow:0px 0px 4px #0008;" |
| | |- style="background-color:#FFF4;" |
| | |Luck Grade ||Drop Probability at 500 Luck |
| | |- |
| | | style="background-color:#FFF4;" | <span class="colorrarity0">Junk</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{50, 50, 50}0.500 \cdot \textbf{220} } }{ {\color{violet}1208.51} }=9.102\%}} |
| | |- |
| | | style="background-color:#FFF4;" | <span class="colorrarity1">Poor</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{100, 100, 100}0.500 \cdot \textbf{250} } }{ {\color{violet}1208.51} }=10.343\%}} |
| | |- |
| | | style="background-color:#FFF4;" | <span class="colorrarity2">Common</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{222, 222, 222}0.750 \cdot \textbf{200} } }{ {\color{violet}1208.51} }=12.412\%}} |
| | |- |
| | | style="background-color:#FFF4;" | <span class="colorrarity3">Uncommon</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{98, 190, 11}1.000 \cdot \textbf{150} } }{ {\color{violet}1208.51} }=12.412\%}} |
| | |- |
| | | style="background-color:#FFF4;" | <span class="colorrarity4">Rare</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{74, 155, 209}3.505 \cdot \textbf{100} } }{ {\color{violet}1208.51} }=29.003\%}} |
| | |- |
| | | style="background-color:#FFF4;" | <span class="colorrarity5">Epic</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{173, 90, 255}3.881 \cdot \textbf{50} } }{ {\color{violet}1208.51} }=16.057\%}} |
| | |- |
| | | style="background-color:#FFF4;" | <span class="colorrarity6">Legendary</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{247, 162, 45}4.257 \cdot \textbf{20} } }{ {\color{violet}1208.51} }=7.045\%}} |
| | |- |
| | | style="background-color:#FFF4;" | <span class="colorrarity7">Unique</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{227, 216, 140}4.382 \cdot \textbf{10} } }{ {\color{violet}1208.51} }=3.626\%}} |
| | |} |
| | |
| | |-|Gold Coin Chest Example= |
| | |
| | The table below is the Drop Rate table of the Gold Coin Chest. |
| | |
| | The Loot Drop table is rather simple. At Luck Grade 0, "Junk", you get nothing. At Luck Grade 2, "Common", you get 1x Gold Coin Chest. |
| | |
| | Notice that despite the [[Gold Coin Chest]]'s item rarity being unique, its Luck Grade is actually Common.<br> |
| | Item Rarity does not equal Luck Grade, despite the two being equal for most items. |
| | {| cellspacing="0" class="wikitable" style="text-align:center; font-weight:bold; text-shadow:0px 0px 4px #0008;" |
| | |- style="background-color:#FFF4;" |
| | |Luck Grade ||Drop Rate |
| | |- |
| | | style="background-color:#FFF4;" | <span class="colorrarity0">Junk</span> ||<span class="colorrarity0">99900</span> |
| | |- |
| | | style="background-color:#FFF4;" | <span class="colorrarity1">Poor</span> ||<span class="colorrarity1">0</span> |
| | |- |
| | | style="background-color:#FFF4;" | <span class="colorrarity2">Common</span> ||<span class="colorrarity2">100</span> |
| | |- |
| | | style="background-color:#FFF4;" | <span class="colorrarity3">Uncommon</span> ||<span class="colorrarity3">0</span> |
| | |- |
| | | style="background-color:#FFF4;" | <span class="colorrarity4">Rare</span> ||<span class="colorrarity4">0</span> |
| | |- |
| | | style="background-color:#FFF4;" | <span class="colorrarity5">Epic</span> ||<span class="colorrarity5">0</span> |
| | |- |
| | | style="background-color:#FFF4;" | <span class="colorrarity6">Legendary</span> ||<span class="colorrarity6">0</span> |
| | |- |
| | | style="background-color:#FFF4;" | <span class="colorrarity7">Unique</span> ||<span class="colorrarity7">0</span> |
| | |} |
| | <br> |
| | <p style="font-size:18px; width:fit-content; border:1px solid #DD952A; border-radius:15px; padding:7px;">Click expand to see the calculations for 0 and 250 Luck.<p> |
| | |
| | <div class="mw-collapsible mw-collapsed" style="width: fit-content"> |
| | <div class="mw-collapsible-content"> |
| | Using the Luck Scalars at 0 Luck, the dot product is |
| | |
| | {{#tag:math|\color{White} |
| | {\color[RGB]{50, 50, 50}1.000 \cdot \textbf{99900} } + |
| | {\color[RGB]{100, 100, 100}1.000 \cdot \textbf{0} } + |
| | {\color[RGB]{222, 222, 222}1.000 \cdot \textbf{100} } + |
| | {\color[RGB]{98, 190, 11}1.000 \cdot \textbf{0} } + |
| | {\color[RGB]{74, 155, 209}1.000 \cdot \textbf{0} } + |
| | {\color[RGB]{173, 90, 255}1.000 \cdot \textbf{0} } + |
| | {\color[RGB]{247, 162, 45}1.000 \cdot \textbf{0} } + |
| | {\color[RGB]{227, 216, 140}1.000 \cdot \textbf{0} } = {\color{violet}100000} }} |
| | |
| | {| cellspacing="0" class="wikitable" style="text-align:center; font-weight:bold; text-shadow:0px 0px 4px #0008;" |
| | |- style="background-color:#FFF4;" |
| | |Luck Grade ||Drop Probability at 0 Luck |
| | |- |
| | | style="background-color:#FFF4;" | <span class="colorrarity0">Junk</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{50, 50, 50}1.000 \cdot \textbf{99900} } }{ {\color{violet}100000} }=99.9\%}} |
| | |- |
| | | style="background-color:#FFF4;" | <span class="colorrarity1">Poor</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{100, 100, 100}1.000 \cdot \textbf{0} } }{ {\color{violet}100000} }=0\%}} |
| | |- |
| | | style="background-color:#FFF4;" | <span class="colorrarity2">Common</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{222, 222, 222}1.000 \cdot \textbf{100} } }{ {\color{violet}100000} }=0.1\%}} |
| | |- |
| | | style="background-color:#FFF4;" | <span class="colorrarity3">Uncommon</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{98, 190, 11}1.000 \cdot \textbf{0} } }{ {\color{violet}100000} }=0\%}} |
| | |- |
| | | style="background-color:#FFF4;" | <span class="colorrarity4">Rare</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{74, 155, 209}1.000 \cdot \textbf{0} } }{ {\color{violet}100000} }=0\%}} |
| | |- |
| | | style="background-color:#FFF4;" | <span class="colorrarity5">Epic</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{173, 90, 255}1.000 \cdot \textbf{0} } }{ {\color{violet}100000} }=0\%}} |
| | |- |
| | | style="background-color:#FFF4;" | <span class="colorrarity6">Legendary</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{247, 162, 45}1.000 \cdot \textbf{0} } }{ {\color{violet}100000} }=0\%}} |
| | |- |
| | | style="background-color:#FFF4;" | <span class="colorrarity7">Unique</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{227, 216, 140}1.000 \cdot \textbf{0} } }{ {\color{violet}100000} }=0\%}} |
| | |} |
| | |
| | Using the Luck Scalars at 250 Luck, the dot product is |
| | |
| | {{#tag:math|\color{White} |
| | {\color[RGB]{50, 50, 50}0.750 \cdot \textbf{99900} } + |
| | {\color[RGB]{100, 100, 100}0.750 \cdot \textbf{0} } + |
| | {\color[RGB]{222, 222, 222}0.875 \cdot \textbf{100} } + |
| | {\color[RGB]{98, 190, 11}1.000 \cdot \textbf{0} } + |
| | {\color[RGB]{74, 155, 209}2.878 \cdot \textbf{0} } + |
| | {\color[RGB]{173, 90, 255}3.159 \cdot \textbf{0} } + |
| | {\color[RGB]{247, 162, 45}3.441 \cdot \textbf{0} } + |
| | {\color[RGB]{227, 216, 140}3.535 \cdot \textbf{0} } = {\color{violet}75012.5} }} |
| | |
| | {| cellspacing="0" class="wikitable" style="text-align:center; font-weight:bold; text-shadow:0px 0px 4px #0008;" |
| | |- style="background-color:#FFF4;" |
| | |Luck Grade ||Drop Probability at 250 Luck |
| | |- |
| | | style="background-color:#FFF4;" | <span class="colorrarity0">Junk</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{50, 50, 50}0.750 \cdot \textbf{99900} } }{ {\color{violet}75012.5} }=99.883\%}} |
| | |- |
| | | style="background-color:#FFF4;" | <span class="colorrarity1">Poor</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{100, 100, 100}0.750 \cdot \textbf{0} } }{ {\color{violet}75012.5} }=0\%}} |
| | |- |
| | | style="background-color:#FFF4;" | <span class="colorrarity2">Common</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{222, 222, 222}0.875 \cdot \textbf{100} } }{ {\color{violet}75012.5} }=0.117\%}} |
| | |- |
| | | style="background-color:#FFF4;" | <span class="colorrarity3">Uncommon</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{98, 190, 11}1.000 \cdot \textbf{0} } }{ {\color{violet}75012.5} }=0\%}} |
| | |- |
| | | style="background-color:#FFF4;" | <span class="colorrarity4">Rare</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{74, 155, 209}2.878 \cdot \textbf{0} } }{ {\color{violet}75012.5} }=0\%}} |
| | |- |
| | | style="background-color:#FFF4;" | <span class="colorrarity5">Epic</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{173, 90, 255}3.159 \cdot \textbf{0} } }{ {\color{violet}75012.5} }=0\%}} |
| | |- |
| | | style="background-color:#FFF4;" | <span class="colorrarity6">Legendary</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{247, 162, 45}3.441 \cdot \textbf{0} } }{ {\color{violet}75012.5} }=0\%}} |
| | |- |
| | | style="background-color:#FFF4;" | <span class="colorrarity7">Unique</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{227, 216, 140}3.535 \cdot \textbf{0} } }{ {\color{violet}75012.5} }=0\%}} |
| | |} |
| | </div></div> |
| | <br><br> |
| | Using the Luck Scalars at 500 Luck, the dot product is |
| | |
| | {{#tag:math|\color{White} |
| | {\color[RGB]{50, 50, 50}0.500 \cdot \textbf{99900} } + |
| | {\color[RGB]{100, 100, 100}0.500 \cdot \textbf{0} } + |
| | {\color[RGB]{222, 222, 222}0.750 \cdot \textbf{100} } + |
| | {\color[RGB]{98, 190, 11}1.000 \cdot \textbf{0} } + |
| | {\color[RGB]{74, 155, 209}3.505 \cdot \textbf{0} } + |
| | {\color[RGB]{173, 90, 255}3.881 \cdot \textbf{0} } + |
| | {\color[RGB]{247, 162, 45}4.257 \cdot \textbf{0} } + |
| | {\color[RGB]{227, 216, 140}4.382 \cdot \textbf{0} } = {\color{violet}50025} }} |
| | |
| | {| cellspacing="0" class="wikitable" style="text-align:center; font-weight:bold; text-shadow:0px 0px 4px #0008;" |
| | |- style="background-color:#FFF4;" |
| | |Luck Grade ||Drop Probability at 500 Luck |
| | |- |
| | | style="background-color:#FFF4;" | <span class="colorrarity0">Junk</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{50, 50, 50}0.500 \cdot \textbf{99900} } }{ {\color{violet}50025} }=99.850\%}} |
| | |- |
| | | style="background-color:#FFF4;" | <span class="colorrarity1">Poor</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{100, 100, 100}0.500 \cdot \textbf{0} } }{ {\color{violet}50025} }=0\%}} |
| | |- |
| | | style="background-color:#FFF4;" | <span class="colorrarity2">Common</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{222, 222, 222}0.750 \cdot \textbf{100} } }{ {\color{violet}50025} }=0.150\%}} |
| | |- |
| | | style="background-color:#FFF4;" | <span class="colorrarity3">Uncommon</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{98, 190, 11}1.000 \cdot \textbf{0} } }{ {\color{violet}50025} }=0\%}} |
| | |- |
| | | style="background-color:#FFF4;" | <span class="colorrarity4">Rare</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{74, 155, 209}3.505 \cdot \textbf{0} } }{ {\color{violet}50025} }=0\%}} |
| | |- |
| | | style="background-color:#FFF4;" | <span class="colorrarity5">Epic</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{173, 90, 255}3.881 \cdot \textbf{0} } }{ {\color{violet}50025} }=0\%}} |
| | |- |
| | | style="background-color:#FFF4;" | <span class="colorrarity6">Legendary</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{247, 162, 45}4.257 \cdot \textbf{0} } }{ {\color{violet}50025} }=0\%}} |
| | |- |
| | | style="background-color:#FFF4;" | <span class="colorrarity7">Unique</span> ||{{#tag:math|\color{White}\frac{ {\color[RGB]{227, 216, 140}4.382 \cdot \textbf{0} } }{ {\color{violet}50025} }=0\%}} |
| | |} |
| | </tabber> |
| | |
| | It's worth noting that you can calculate probability at X Luck from either the Drop Rate table ''or'' the Drop Probability at 0 Luck table.<br> |
| | Using the Drop Probability at 0 Luck table works because the Luck Scalars are all 1 and you have to normalize regardless of using the Drop Rate or the Probability at 0 Luck. |
| | |
| | The wiki does not display the Drop Rate tables themselves, however it does show the alternative. |