From Dark and Darker Wiki
m (test) Tag: Reverted |
m (Automated edit: Fixed a bug that caused stats to be outdated) |
||
(62 intermediate revisions by 6 users not shown) | |||
Line 1: | Line 1: | ||
<includeonly><div style="display:flex;flex-wrap:wrap;"> | |||
<div style="width:500px;> | |||
{{#switch:{{lc:{{{1|}}}}} | |||
|actionspeed=Agility and Dexterity governs your Action Speed. | |||
Agility gives 0.25 Action Speed Rating, and Dexterity gives 0.75 Action Speed Rating, which then get summed into a total Action Speed Rating and finally converted into Action Speed using the graph. | |||
<code> Action Speed Rating = Agility * 0.25 + Dexterity * 0.75</code> | |||
0 Action Speed Rating starts at -38% Action Speed. | |||
*0 -> -38% | |||
*0 to 10 = 3% each, up to -8% | |||
*10 to 13 = 2% each, up to -2% | |||
*13 to 25 = 1% each, up to 10% | |||
*25 to 41 = 1.5% each, up to 34% | |||
*41 to 50 = 1% each, up to 43% | |||
*50 to 100 = 0.5% each, up to 68% | |||
{{#widget:Chart|uniqueId=ActionSpeed|data=[{"x": 0,"y": -0.38},{"x": 10,"y": -0.08},{"x": 13,"y": -0.02},{"x": 25,"y": 0.1},{"x": 41,"y": 0.34},{"x": 50,"y": 0.43},{"x": 100,"y": 0.68}]|color=orange}} | |||
|basehealth=Strength and Vigor governs your Base Health. | |||
Strength gives 0.25 Base Health Rating, and Vigor gives 0.75 Base Health Rating, which then get summed into a total Base Health Rating and finally converted into Base Health using the graph. | |||
<code> Base Health Rating = Strength * 0.25 + Vigor * 0.75</code> | |||
0 Base Health Rating starts at 60 Base Health. | |||
*0 -> 60 | |||
*0 to 10 = 3 each, up to 90 | |||
*10 to 50 = 2 each, up to 170 | |||
*50 to 75 = 1 each, up to 195 | |||
*75 to 100 = 0.5 each, up to 207.5 | |||
{{#widget:Chart|uniqueId=BaseHealth|data=[{"x": 0,"y": 60},{"x": 10,"y": 90},{"x": 50,"y": 170},{"x": 75,"y": 195},{"x": 100,"y": 207.5}]|color=orange}} | |||
|buffduration=Will governs your Buff Duration. | |||
0 Will starts at -80% Buff Duration. | |||
*0 -> -80% | |||
*0 to 5 = 10% each, up to -30% | |||
*5 to 7 = 5% each, up to -20% | |||
*7 to 11 = 3% each, up to -8% | |||
*11 to 15 = 2% each, up to 0% | |||
*15 to 50 = 1% each, up to 35% | |||
*50 to 100 = 0.5% each, up to 60% | |||
{{#widget:Chart|uniqueId=BuffDuration|data=[{"x": 0,"y": -0.8},{"x": 5,"y": -0.3},{"x": 7,"y": -0.2},{"x": 11,"y": -0.08},{"x": 15,"y": 0},{"x": 50,"y": 0.35},{"x": 100,"y": 0.6}]|color=orange}} | |||
|cooldownreduction=Resourcefulness governs your Cooldown Reduction. | |||
0 Resourcefulness starts at -30% Cooldown Reduction. | |||
*0 -> -30% | |||
*0 to 20 = 2% each, up to 10% | |||
*20 to 50 = 1% each, up to 40% | |||
*50 to 100 = 0.5% each, up to 65% | |||
{{#widget:Chart|uniqueId=CooldownReduction|data=[{"x": 0,"y": -0.3},{"x": 20,"y": 0.1},{"x": 50,"y": 0.4},{"x": 100,"y": 0.65}]|color=orange}} | |||
|debuffduration=Will governs your Debuff Duration. | |||
0 Will starts at 400% Debuff Duration. | |||
*0 -> 400% | |||
*0 to 1 = -166.7% each, up to 233.3% | |||
*1 to 2 = -83.3% each, up to 150% | |||
*2 to 3 = -50% each, up to 100% | |||
*3 to 4 = -33.3% each, up to 66.7% | |||
*4 to 5 = -23.8% each, up to 42.9% | |||
*5 to 6 = -9.6% each, up to 33.3% | |||
*6 to 7 = -8.3% each, up to 25% | |||
*7 to 8 = -4.5% each, up to 20.5% | |||
*8 to 9 = -4.2% each, up to 16.3% | |||
*9 to 10 = -3.9% each, up to 12.4% | |||
*10 to 11 = -3.7% each, up to 8.7% | |||
*11 to 12 = -2.3% each, up to 6.4% | |||
*12 to 14 = -2.2% each, up to 2% | |||
*14 to 15 = -2% each, up to 0% | |||
*15 to 17 = -1% each, up to -2% | |||
*17 to 19 = -0.9% each, up to -3.8% | |||
*19 to 20 = -1% each, up to -4.8% | |||
*20 to 21 = -0.9% each, up to -5.7% | |||
*21 to 22 = -0.8% each, up to -6.5% | |||
*22 to 24 = -0.9% each, up to -8.3% | |||
*24 to 29 = -0.8% each, up to -12.3% | |||
*29 to 30 = -0.7% each, up to -13% | |||
*30 to 31 = -0.8% each, up to -13.8% | |||
*31 to 32 = -0.7% each, up to -14.5% | |||
*32 to 33 = -0.8% each, up to -15.3% | |||
*33 to 36 = -0.7% each, up to -17.4% | |||
*36 to 37 = -0.6% each, up to -18% | |||
*37 to 39 = -0.7% each, up to -19.4% | |||
*39 to 41 = -0.6% each, up to -20.6% | |||
*41 to 42 = -0.7% each, up to -21.3% | |||
*42 to 46 = -0.6% each, up to -23.7% | |||
*46 to 47 = -0.5% each, up to -24.2% | |||
*47 to 49 = -0.6% each, up to -25.4% | |||
*49 to 50 = -0.5% each, up to -25.9% | |||
*50 to 52 = -0.3% each, up to -26.5% | |||
*52 to 53 = -0.2% each, up to -26.7% | |||
*53 to 55 = -0.3% each, up to -27.3% | |||
*55 to 56 = -0.2% each, up to -27.5% | |||
*56 to 58 = -0.3% each, up to -28.1% | |||
*58 to 59 = -0.2% each, up to -28.3% | |||
*59 to 60 = -0.3% each, up to -28.6% | |||
*60 to 61 = -0.2% each, up to -28.8% | |||
*61 to 62 = -0.3% each, up to -29.1% | |||
*62 to 63 = -0.2% each, up to -29.3% | |||
*63 to 64 = -0.3% each, up to -29.6% | |||
*64 to 65 = -0.2% each, up to -29.8% | |||
*65 to 66 = -0.3% each, up to -30.1% | |||
*66 to 67 = -0.2% each, up to -30.3% | |||
*67 to 68 = -0.3% each, up to -30.6% | |||
*68 to 70 = -0.2% each, up to -31% | |||
*70 to 71 = -0.3% each, up to -31.3% | |||
*71 to 73 = -0.2% each, up to -31.7% | |||
*73 to 74 = -0.3% each, up to -32% | |||
*74 to 76 = -0.2% each, up to -32.4% | |||
*76 to 77 = -0.3% each, up to -32.7% | |||
*77 to 80 = -0.2% each, up to -33.3% | |||
*80 to 81 = -0.3% each, up to -33.6% | |||
*81 to 86 = -0.2% each, up to -34.6% | |||
*86 to 87 = -0.3% each, up to -34.9% | |||
*87 to 100 = -0.2% each, up to -37.5% | |||
{{#widget:Chart|uniqueId=DebuffDuration|data=[{"x": 0,"y": 4},{"x": 1,"y": 2.333},{"x": 2,"y": 1.5},{"x": 3,"y": 1},{"x": 4,"y": 0.667},{"x": 5,"y": 0.429},{"x": 6,"y": 0.333},{"x": 7,"y": 0.25},{"x": 8,"y": 0.205},{"x": 9,"y": 0.163},{"x": 10,"y": 0.124},{"x": 11,"y": 0.087},{"x": 12,"y": 0.064},{"x": 14,"y": 0.02},{"x": 15,"y": 0},{"x": 17,"y": -0.02},{"x": 19,"y": -0.038},{"x": 20,"y": -0.048},{"x": 21,"y": -0.057},{"x": 22,"y": -0.065},{"x": 24,"y": -0.083},{"x": 29,"y": -0.123},{"x": 30,"y": -0.13},{"x": 31,"y": -0.138},{"x": 32,"y": -0.145},{"x": 33,"y": -0.153},{"x": 36,"y": -0.174},{"x": 37,"y": -0.18},{"x": 39,"y": -0.194},{"x": 41,"y": -0.206},{"x": 42,"y": -0.213},{"x": 46,"y": -0.237},{"x": 47,"y": -0.242},{"x": 49,"y": -0.254},{"x": 50,"y": -0.259},{"x": 52,"y": -0.265},{"x": 53,"y": -0.267},{"x": 55,"y": -0.273},{"x": 56,"y": -0.275},{"x": 58,"y": -0.281},{"x": 59,"y": -0.283},{"x": 60,"y": -0.286},{"x": 61,"y": -0.288},{"x": 62,"y": -0.291},{"x": 63,"y": -0.293},{"x": 64,"y": -0.296},{"x": 65,"y": -0.298},{"x": 66,"y": -0.301},{"x": 67,"y": -0.303},{"x": 68,"y": -0.306},{"x": 70,"y": -0.31},{"x": 71,"y": -0.313},{"x": 73,"y": -0.317},{"x": 74,"y": -0.32},{"x": 76,"y": -0.324},{"x": 77,"y": -0.327},{"x": 80,"y": -0.333},{"x": 81,"y": -0.336},{"x": 86,"y": -0.346},{"x": 87,"y": -0.349},{"x": 100,"y": -0.375}]|color=orange}} | |||
|healthrecovery=Vigor governs your Health Recovery. | |||
0 Vigor starts at -55% Health Recovery. | |||
*0 -> -55% | |||
*0 to 5 = 5% each, up to -30% | |||
*5 to 15 = 3% each, up to 0% | |||
*15 to 25 = 7% each, up to 70% | |||
*25 to 35 = 5% each, up to 120% | |||
*35 to 84 = 2% each, up to 218% | |||
*84 to 85 = 1% each, up to 219% | |||
*85 to 86 = 3% each, up to 222% | |||
*86 to 100 = 2% each, up to 250% | |||
{{#widget:Chart|uniqueId=HealthRecovery|data=[{"x": 0,"y": -0.55},{"x": 5,"y": -0.3},{"x": 15,"y": 0},{"x": 25,"y": 0.7},{"x": 35,"y": 1.2},{"x": 84,"y": 2.18},{"x": 85,"y": 2.19},{"x": 86,"y": 2.22},{"x": 100,"y": 2.5}]|color=orange}} | |||
|itemequipspeed=Dexterity governs your Item Equip Speed. | |||
0 Dexterity starts at -95% Item Equip Speed. | |||
*0 -> -95% | |||
*0 to 1 = 0% each, up to -95% | |||
*1 to 2 = 4% each, up to -91% | |||
*2 to 15 = 7% each, up to 0% | |||
*15 to 35 = 5% each, up to 100% | |||
*35 to 70 = 2% each, up to 170% | |||
*70 to 100 = 1% each, up to 200% | |||
{{#widget:Chart|uniqueId=ItemEquipSpeed|data=[{"x": 0,"y": -0.95},{"x": 1,"y": -0.95},{"x": 2,"y": -0.91},{"x": 15,"y": 0},{"x": 35,"y": 1},{"x": 70,"y": 1.7},{"x": 100,"y": 2}]|color=orange}} | |||
|luckgrade00={{#widget:Chart|uniqueId=LuckGrade00|data=[{"x": 0,"y": 1},{"x": 500,"y": 0.5}]|color=orange}} | |||
|luckgrade01={{#widget:Chart|uniqueId=LuckGrade01|data=[{"x": 0,"y": 1},{"x": 500,"y": 0.5}]|color=orange}} | |||
|luckgrade02={{#widget:Chart|uniqueId=LuckGrade02|data=[{"x": 0,"y": 1},{"x": 1,"y": 1},{"x": 2,"y": 0.999},{"x": 3,"y": 0.999},{"x": 4,"y": 0.998},{"x": 5,"y": 0.998},{"x": 6,"y": 0.997},{"x": 7,"y": 0.997},{"x": 8,"y": 0.996},{"x": 9,"y": 0.996},{"x": 10,"y": 0.995},{"x": 11,"y": 0.995},{"x": 12,"y": 0.994},{"x": 13,"y": 0.994},{"x": 14,"y": 0.993},{"x": 15,"y": 0.993},{"x": 16,"y": 0.992},{"x": 17,"y": 0.992},{"x": 18,"y": 0.991},{"x": 19,"y": 0.991},{"x": 20,"y": 0.99},{"x": 21,"y": 0.99},{"x": 22,"y": 0.989},{"x": 23,"y": 0.989},{"x": 24,"y": 0.988},{"x": 25,"y": 0.988},{"x": 26,"y": 0.987},{"x": 27,"y": 0.987},{"x": 28,"y": 0.986},{"x": 29,"y": 0.986},{"x": 30,"y": 0.985},{"x": 31,"y": 0.985},{"x": 32,"y": 0.984},{"x": 33,"y": 0.984},{"x": 34,"y": 0.983},{"x": 35,"y": 0.983},{"x": 36,"y": 0.982},{"x": 37,"y": 0.982},{"x": 38,"y": 0.981},{"x": 39,"y": 0.981},{"x": 40,"y": 0.98},{"x": 41,"y": 0.98},{"x": 42,"y": 0.979},{"x": 43,"y": 0.979},{"x": 44,"y": 0.978},{"x": 45,"y": 0.978},{"x": 46,"y": 0.977},{"x": 47,"y": 0.977},{"x": 48,"y": 0.976},{"x": 49,"y": 0.976},{"x": 50,"y": 0.975},{"x": 51,"y": 0.975},{"x": 52,"y": 0.974},{"x": 53,"y": 0.974},{"x": 54,"y": 0.973},{"x": 55,"y": 0.973},{"x": 56,"y": 0.972},{"x": 57,"y": 0.972},{"x": 58,"y": 0.971},{"x": 59,"y": 0.971},{"x": 60,"y": 0.97},{"x": 61,"y": 0.97},{"x": 62,"y": 0.969},{"x": 63,"y": 0.969},{"x": 64,"y": 0.968},{"x": 65,"y": 0.968},{"x": 66,"y": 0.967},{"x": 67,"y": 0.967},{"x": 68,"y": 0.966},{"x": 69,"y": 0.966},{"x": 70,"y": 0.965},{"x": 71,"y": 0.965},{"x": 72,"y": 0.964},{"x": 73,"y": 0.964},{"x": 74,"y": 0.963},{"x": 75,"y": 0.963},{"x": 76,"y": 0.962},{"x": 77,"y": 0.962},{"x": 78,"y": 0.961},{"x": 79,"y": 0.961},{"x": 80,"y": 0.96},{"x": 81,"y": 0.96},{"x": 82,"y": 0.959},{"x": 83,"y": 0.959},{"x": 84,"y": 0.958},{"x": 85,"y": 0.958},{"x": 86,"y": 0.957},{"x": 87,"y": 0.957},{"x": 88,"y": 0.956},{"x": 89,"y": 0.956},{"x": 90,"y": 0.955},{"x": 91,"y": 0.955},{"x": 92,"y": 0.954},{"x": 93,"y": 0.954},{"x": 94,"y": 0.953},{"x": 95,"y": 0.953},{"x": 96,"y": 0.952},{"x": 97,"y": 0.952},{"x": 98,"y": 0.951},{"x": 99,"y": 0.951},{"x": 100,"y": 0.95},{"x": 101,"y": 0.95},{"x": 102,"y": 0.949},{"x": 103,"y": 0.949},{"x": 104,"y": 0.948},{"x": 105,"y": 0.948},{"x": 106,"y": 0.947},{"x": 107,"y": 0.947},{"x": 108,"y": 0.946},{"x": 109,"y": 0.946},{"x": 110,"y": 0.945},{"x": 111,"y": 0.945},{"x": 112,"y": 0.944},{"x": 113,"y": 0.944},{"x": 114,"y": 0.943},{"x": 115,"y": 0.943},{"x": 116,"y": 0.942},{"x": 117,"y": 0.942},{"x": 118,"y": 0.941},{"x": 119,"y": 0.941},{"x": 120,"y": 0.94},{"x": 121,"y": 0.94},{"x": 122,"y": 0.939},{"x": 123,"y": 0.939},{"x": 124,"y": 0.938},{"x": 125,"y": 0.938},{"x": 126,"y": 0.937},{"x": 127,"y": 0.937},{"x": 128,"y": 0.936},{"x": 129,"y": 0.936},{"x": 130,"y": 0.935},{"x": 131,"y": 0.935},{"x": 132,"y": 0.934},{"x": 133,"y": 0.934},{"x": 134,"y": 0.933},{"x": 135,"y": 0.933},{"x": 136,"y": 0.932},{"x": 137,"y": 0.932},{"x": 138,"y": 0.931},{"x": 139,"y": 0.931},{"x": 140,"y": 0.93},{"x": 141,"y": 0.93},{"x": 142,"y": 0.929},{"x": 143,"y": 0.929},{"x": 144,"y": 0.928},{"x": 145,"y": 0.928},{"x": 146,"y": 0.927},{"x": 147,"y": 0.927},{"x": 148,"y": 0.926},{"x": 149,"y": 0.926},{"x": 150,"y": 0.925},{"x": 151,"y": 0.925},{"x": 152,"y": 0.924},{"x": 153,"y": 0.924},{"x": 154,"y": 0.923},{"x": 155,"y": 0.923},{"x": 156,"y": 0.922},{"x": 157,"y": 0.922},{"x": 158,"y": 0.921},{"x": 159,"y": 0.921},{"x": 160,"y": 0.92},{"x": 161,"y": 0.92},{"x": 162,"y": 0.919},{"x": 163,"y": 0.919},{"x": 164,"y": 0.918},{"x": 165,"y": 0.918},{"x": 166,"y": 0.917},{"x": 167,"y": 0.917},{"x": 168,"y": 0.916},{"x": 169,"y": 0.916},{"x": 170,"y": 0.915},{"x": 171,"y": 0.915},{"x": 172,"y": 0.914},{"x": 173,"y": 0.914},{"x": 174,"y": 0.913},{"x": 175,"y": 0.913},{"x": 176,"y": 0.912},{"x": 177,"y": 0.912},{"x": 178,"y": 0.911},{"x": 179,"y": 0.911},{"x": 180,"y": 0.91},{"x": 181,"y": 0.91},{"x": 182,"y": 0.909},{"x": 183,"y": 0.909},{"x": 184,"y": 0.908},{"x": 185,"y": 0.908},{"x": 186,"y": 0.907},{"x": 187,"y": 0.907},{"x": 188,"y": 0.906},{"x": 189,"y": 0.906},{"x": 190,"y": 0.905},{"x": 191,"y": 0.905},{"x": 192,"y": 0.904},{"x": 193,"y": 0.904},{"x": 194,"y": 0.903},{"x": 195,"y": 0.903},{"x": 196,"y": 0.902},{"x": 197,"y": 0.902},{"x": 198,"y": 0.901},{"x": 199,"y": 0.901},{"x": 200,"y": 0.9},{"x": 201,"y": 0.9},{"x": 202,"y": 0.899},{"x": 203,"y": 0.899},{"x": 204,"y": 0.898},{"x": 205,"y": 0.898},{"x": 206,"y": 0.897},{"x": 207,"y": 0.897},{"x": 208,"y": 0.896},{"x": 209,"y": 0.896},{"x": 210,"y": 0.895},{"x": 211,"y": 0.895},{"x": 212,"y": 0.894},{"x": 213,"y": 0.894},{"x": 214,"y": 0.893},{"x": 215,"y": 0.893},{"x": 216,"y": 0.892},{"x": 217,"y": 0.892},{"x": 218,"y": 0.891},{"x": 219,"y": 0.891},{"x": 220,"y": 0.89},{"x": 221,"y": 0.89},{"x": 222,"y": 0.889},{"x": 223,"y": 0.889},{"x": 224,"y": 0.888},{"x": 225,"y": 0.888},{"x": 226,"y": 0.887},{"x": 227,"y": 0.887},{"x": 228,"y": 0.886},{"x": 229,"y": 0.886},{"x": 230,"y": 0.885},{"x": 231,"y": 0.885},{"x": 232,"y": 0.884},{"x": 233,"y": 0.884},{"x": 234,"y": 0.883},{"x": 235,"y": 0.883},{"x": 236,"y": 0.882},{"x": 237,"y": 0.882},{"x": 238,"y": 0.881},{"x": 239,"y": 0.881},{"x": 240,"y": 0.88},{"x": 241,"y": 0.88},{"x": 242,"y": 0.879},{"x": 243,"y": 0.879},{"x": 244,"y": 0.878},{"x": 245,"y": 0.878},{"x": 246,"y": 0.877},{"x": 247,"y": 0.877},{"x": 248,"y": 0.876},{"x": 249,"y": 0.876},{"x": 250,"y": 0.875},{"x": 251,"y": 0.875},{"x": 252,"y": 0.874},{"x": 253,"y": 0.874},{"x": 254,"y": 0.873},{"x": 255,"y": 0.873},{"x": 256,"y": 0.872},{"x": 257,"y": 0.872},{"x": 258,"y": 0.871},{"x": 259,"y": 0.871},{"x": 260,"y": 0.87},{"x": 261,"y": 0.87},{"x": 262,"y": 0.869},{"x": 263,"y": 0.869},{"x": 264,"y": 0.868},{"x": 265,"y": 0.868},{"x": 266,"y": 0.867},{"x": 267,"y": 0.867},{"x": 268,"y": 0.866},{"x": 269,"y": 0.866},{"x": 270,"y": 0.865},{"x": 271,"y": 0.865},{"x": 272,"y": 0.864},{"x": 273,"y": 0.864},{"x": 274,"y": 0.863},{"x": 275,"y": 0.863},{"x": 276,"y": 0.862},{"x": 277,"y": 0.862},{"x": 278,"y": 0.861},{"x": 279,"y": 0.861},{"x": 280,"y": 0.86},{"x": 281,"y": 0.86},{"x": 282,"y": 0.859},{"x": 283,"y": 0.859},{"x": 284,"y": 0.858},{"x": 285,"y": 0.858},{"x": 286,"y": 0.857},{"x": 287,"y": 0.857},{"x": 288,"y": 0.856},{"x": 289,"y": 0.856},{"x": 290,"y": 0.855},{"x": 291,"y": 0.855},{"x": 292,"y": 0.854},{"x": 293,"y": 0.854},{"x": 294,"y": 0.853},{"x": 295,"y": 0.853},{"x": 296,"y": 0.852},{"x": 297,"y": 0.852},{"x": 298,"y": 0.851},{"x": 299,"y": 0.851},{"x": 300,"y": 0.85},{"x": 301,"y": 0.85},{"x": 302,"y": 0.849},{"x": 303,"y": 0.849},{"x": 304,"y": 0.848},{"x": 305,"y": 0.848},{"x": 306,"y": 0.847},{"x": 307,"y": 0.847},{"x": 308,"y": 0.846},{"x": 309,"y": 0.846},{"x": 310,"y": 0.845},{"x": 311,"y": 0.845},{"x": 312,"y": 0.844},{"x": 313,"y": 0.844},{"x": 314,"y": 0.843},{"x": 315,"y": 0.843},{"x": 316,"y": 0.842},{"x": 317,"y": 0.842},{"x": 318,"y": 0.841},{"x": 319,"y": 0.841},{"x": 320,"y": 0.84},{"x": 321,"y": 0.84},{"x": 322,"y": 0.839},{"x": 323,"y": 0.839},{"x": 324,"y": 0.838},{"x": 325,"y": 0.838},{"x": 326,"y": 0.837},{"x": 327,"y": 0.837},{"x": 328,"y": 0.836},{"x": 329,"y": 0.836},{"x": 330,"y": 0.835},{"x": 331,"y": 0.835},{"x": 332,"y": 0.834},{"x": 333,"y": 0.834},{"x": 334,"y": 0.833},{"x": 335,"y": 0.833},{"x": 336,"y": 0.832},{"x": 337,"y": 0.832},{"x": 338,"y": 0.831},{"x": 339,"y": 0.831},{"x": 340,"y": 0.83},{"x": 341,"y": 0.83},{"x": 342,"y": 0.829},{"x": 343,"y": 0.829},{"x": 344,"y": 0.828},{"x": 345,"y": 0.828},{"x": 346,"y": 0.827},{"x": 347,"y": 0.827},{"x": 348,"y": 0.826},{"x": 349,"y": 0.826},{"x": 350,"y": 0.825},{"x": 351,"y": 0.825},{"x": 352,"y": 0.824},{"x": 353,"y": 0.824},{"x": 354,"y": 0.823},{"x": 355,"y": 0.823},{"x": 356,"y": 0.822},{"x": 357,"y": 0.822},{"x": 358,"y": 0.821},{"x": 359,"y": 0.821},{"x": 360,"y": 0.82},{"x": 361,"y": 0.82},{"x": 362,"y": 0.819},{"x": 363,"y": 0.819},{"x": 364,"y": 0.818},{"x": 365,"y": 0.818},{"x": 366,"y": 0.817},{"x": 367,"y": 0.817},{"x": 368,"y": 0.816},{"x": 369,"y": 0.816},{"x": 370,"y": 0.815},{"x": 371,"y": 0.815},{"x": 372,"y": 0.814},{"x": 373,"y": 0.814},{"x": 374,"y": 0.813},{"x": 375,"y": 0.813},{"x": 376,"y": 0.812},{"x": 377,"y": 0.812},{"x": 378,"y": 0.811},{"x": 379,"y": 0.811},{"x": 380,"y": 0.81},{"x": 381,"y": 0.81},{"x": 382,"y": 0.809},{"x": 383,"y": 0.809},{"x": 384,"y": 0.808},{"x": 385,"y": 0.808},{"x": 386,"y": 0.807},{"x": 387,"y": 0.807},{"x": 388,"y": 0.806},{"x": 389,"y": 0.806},{"x": 390,"y": 0.805},{"x": 391,"y": 0.805},{"x": 392,"y": 0.804},{"x": 393,"y": 0.804},{"x": 394,"y": 0.803},{"x": 395,"y": 0.803},{"x": 396,"y": 0.802},{"x": 397,"y": 0.802},{"x": 398,"y": 0.801},{"x": 399,"y": 0.801},{"x": 400,"y": 0.8},{"x": 401,"y": 0.8},{"x": 402,"y": 0.799},{"x": 403,"y": 0.799},{"x": 404,"y": 0.798},{"x": 405,"y": 0.798},{"x": 406,"y": 0.797},{"x": 407,"y": 0.797},{"x": 408,"y": 0.796},{"x": 409,"y": 0.796},{"x": 410,"y": 0.795},{"x": 411,"y": 0.795},{"x": 412,"y": 0.794},{"x": 413,"y": 0.794},{"x": 414,"y": 0.793},{"x": 415,"y": 0.793},{"x": 416,"y": 0.792},{"x": 417,"y": 0.792},{"x": 418,"y": 0.791},{"x": 419,"y": 0.791},{"x": 420,"y": 0.79},{"x": 421,"y": 0.79},{"x": 422,"y": 0.789},{"x": 423,"y": 0.789},{"x": 424,"y": 0.788},{"x": 425,"y": 0.788},{"x": 426,"y": 0.787},{"x": 427,"y": 0.787},{"x": 428,"y": 0.786},{"x": 429,"y": 0.786},{"x": 430,"y": 0.785},{"x": 431,"y": 0.785},{"x": 432,"y": 0.784},{"x": 433,"y": 0.784},{"x": 434,"y": 0.783},{"x": 435,"y": 0.783},{"x": 436,"y": 0.782},{"x": 437,"y": 0.782},{"x": 438,"y": 0.781},{"x": 439,"y": 0.781},{"x": 440,"y": 0.78},{"x": 441,"y": 0.78},{"x": 442,"y": 0.779},{"x": 443,"y": 0.779},{"x": 444,"y": 0.778},{"x": 445,"y": 0.778},{"x": 446,"y": 0.777},{"x": 447,"y": 0.777},{"x": 448,"y": 0.776},{"x": 449,"y": 0.776},{"x": 450,"y": 0.775},{"x": 451,"y": 0.775},{"x": 452,"y": 0.774},{"x": 453,"y": 0.774},{"x": 454,"y": 0.773},{"x": 455,"y": 0.773},{"x": 456,"y": 0.772},{"x": 457,"y": 0.772},{"x": 458,"y": 0.771},{"x": 459,"y": 0.771},{"x": 460,"y": 0.77},{"x": 461,"y": 0.77},{"x": 462,"y": 0.769},{"x": 463,"y": 0.769},{"x": 464,"y": 0.768},{"x": 465,"y": 0.768},{"x": 466,"y": 0.767},{"x": 467,"y": 0.767},{"x": 468,"y": 0.766},{"x": 469,"y": 0.766},{"x": 470,"y": 0.765},{"x": 471,"y": 0.765},{"x": 472,"y": 0.764},{"x": 473,"y": 0.764},{"x": 474,"y": 0.763},{"x": 475,"y": 0.763},{"x": 476,"y": 0.762},{"x": 477,"y": 0.762},{"x": 478,"y": 0.761},{"x": 479,"y": 0.761},{"x": 480,"y": 0.76},{"x": 481,"y": 0.76},{"x": 482,"y": 0.759},{"x": 483,"y": 0.759},{"x": 484,"y": 0.758},{"x": 485,"y": 0.758},{"x": 486,"y": 0.757},{"x": 487,"y": 0.757},{"x": 488,"y": 0.756},{"x": 489,"y": 0.756},{"x": 490,"y": 0.755},{"x": 491,"y": 0.755},{"x": 492,"y": 0.754},{"x": 493,"y": 0.754},{"x": 494,"y": 0.753},{"x": 495,"y": 0.753},{"x": 496,"y": 0.752},{"x": 497,"y": 0.752},{"x": 498,"y": 0.751},{"x": 499,"y": 0.751},{"x": 500,"y": 0.75}]|color=orange}} | |||
|luckgrade03={{#widget:Chart|uniqueId=LuckGrade03|data=[{"x": 0,"y": 1},{"x": 500,"y": 1}]|color=orange}} | |||
|luckgrade04={{#widget:Chart|uniqueId=LuckGrade04|data=[{"x": 0,"y": 1},{"x": 7,"y": 1.07},{"x": 8,"y": 1.079},{"x": 12,"y": 1.119},{"x": 13,"y": 1.128},{"x": 16,"y": 1.158},{"x": 17,"y": 1.167},{"x": 19,"y": 1.187},{"x": 20,"y": 1.196},{"x": 21,"y": 1.206},{"x": 22,"y": 1.215},{"x": 23,"y": 1.225},{"x": 24,"y": 1.234},{"x": 26,"y": 1.254},{"x": 28,"y": 1.272},{"x": 29,"y": 1.282},{"x": 30,"y": 1.291},{"x": 31,"y": 1.301},{"x": 33,"y": 1.319},{"x": 34,"y": 1.329},{"x": 36,"y": 1.347},{"x": 37,"y": 1.357},{"x": 40,"y": 1.384},{"x": 41,"y": 1.394},{"x": 49,"y": 1.466},{"x": 50,"y": 1.476},{"x": 51,"y": 1.485},{"x": 52,"y": 1.493},{"x": 60,"y": 1.565},{"x": 61,"y": 1.573},{"x": 64,"y": 1.6},{"x": 65,"y": 1.608},{"x": 67,"y": 1.626},{"x": 68,"y": 1.634},{"x": 70,"y": 1.652},{"x": 71,"y": 1.66},{"x": 72,"y": 1.669},{"x": 73,"y": 1.677},{"x": 75,"y": 1.695},{"x": 77,"y": 1.711},{"x": 78,"y": 1.72},{"x": 79,"y": 1.728},{"x": 80,"y": 1.737},{"x": 81,"y": 1.745},{"x": 82,"y": 1.754},{"x": 84,"y": 1.77},{"x": 85,"y": 1.779},{"x": 88,"y": 1.803},{"x": 89,"y": 1.812},{"x": 93,"y": 1.844},{"x": 94,"y": 1.853},{"x": 107,"y": 1.957},{"x": 108,"y": 1.964},{"x": 112,"y": 1.996},{"x": 113,"y": 2.003},{"x": 116,"y": 2.027},{"x": 117,"y": 2.034},{"x": 119,"y": 2.05},{"x": 120,"y": 2.057},{"x": 121,"y": 2.065},{"x": 122,"y": 2.072},{"x": 123,"y": 2.08},{"x": 124,"y": 2.087},{"x": 126,"y": 2.103},{"x": 128,"y": 2.117},{"x": 129,"y": 2.125},{"x": 130,"y": 2.132},{"x": 131,"y": 2.14},{"x": 133,"y": 2.154},{"x": 134,"y": 2.162},{"x": 136,"y": 2.176},{"x": 137,"y": 2.184},{"x": 140,"y": 2.205},{"x": 141,"y": 2.213},{"x": 149,"y": 2.269},{"x": 150,"y": 2.277},{"x": 151,"y": 2.284},{"x": 152,"y": 2.29},{"x": 160,"y": 2.346},{"x": 161,"y": 2.352},{"x": 164,"y": 2.373},{"x": 165,"y": 2.379},{"x": 167,"y": 2.393},{"x": 168,"y": 2.399},{"x": 170,"y": 2.413},{"x": 171,"y": 2.419},{"x": 172,"y": 2.426},{"x": 173,"y": 2.432},{"x": 175,"y": 2.446},{"x": 177,"y": 2.458},{"x": 178,"y": 2.465},{"x": 179,"y": 2.471},{"x": 180,"y": 2.478},{"x": 181,"y": 2.484},{"x": 182,"y": 2.491},{"x": 184,"y": 2.503},{"x": 185,"y": 2.51},{"x": 188,"y": 2.528},{"x": 189,"y": 2.535},{"x": 193,"y": 2.559},{"x": 194,"y": 2.566},{"x": 207,"y": 2.644},{"x": 208,"y": 2.649},{"x": 212,"y": 2.673},{"x": 213,"y": 2.678},{"x": 216,"y": 2.696},{"x": 217,"y": 2.701},{"x": 219,"y": 2.713},{"x": 220,"y": 2.718},{"x": 221,"y": 2.724},{"x": 222,"y": 2.729},{"x": 223,"y": 2.735},{"x": 224,"y": 2.74},{"x": 226,"y": 2.752},{"x": 228,"y": 2.762},{"x": 229,"y": 2.768},{"x": 230,"y": 2.773},{"x": 231,"y": 2.779},{"x": 233,"y": 2.789},{"x": 234,"y": 2.795},{"x": 236,"y": 2.805},{"x": 237,"y": 2.811},{"x": 240,"y": 2.826},{"x": 241,"y": 2.832},{"x": 249,"y": 2.872},{"x": 250,"y": 2.878},{"x": 251,"y": 2.883},{"x": 252,"y": 2.887},{"x": 260,"y": 2.927},{"x": 261,"y": 2.931},{"x": 264,"y": 2.946},{"x": 265,"y": 2.95},{"x": 267,"y": 2.96},{"x": 268,"y": 2.964},{"x": 270,"y": 2.974},{"x": 271,"y": 2.978},{"x": 272,"y": 2.983},{"x": 273,"y": 2.987},{"x": 275,"y": 2.997},{"x": 277,"y": 3.005},{"x": 278,"y": 3.01},{"x": 279,"y": 3.014},{"x": 280,"y": 3.019},{"x": 281,"y": 3.023},{"x": 282,"y": 3.028},{"x": 284,"y": 3.036},{"x": 285,"y": 3.041},{"x": 288,"y": 3.053},{"x": 289,"y": 3.058},{"x": 293,"y": 3.074},{"x": 294,"y": 3.079},{"x": 307,"y": 3.131},{"x": 308,"y": 3.134},{"x": 312,"y": 3.15},{"x": 313,"y": 3.153},{"x": 316,"y": 3.165},{"x": 317,"y": 3.168},{"x": 319,"y": 3.176},{"x": 320,"y": 3.179},{"x": 321,"y": 3.183},{"x": 322,"y": 3.186},{"x": 323,"y": 3.19},{"x": 324,"y": 3.193},{"x": 326,"y": 3.201},{"x": 328,"y": 3.207},{"x": 329,"y": 3.211},{"x": 330,"y": 3.214},{"x": 331,"y": 3.218},{"x": 333,"y": 3.224},{"x": 334,"y": 3.228},{"x": 336,"y": 3.234},{"x": 337,"y": 3.238},{"x": 340,"y": 3.247},{"x": 341,"y": 3.251},{"x": 349,"y": 3.275},{"x": 350,"y": 3.279},{"x": 351,"y": 3.282},{"x": 352,"y": 3.284},{"x": 360,"y": 3.308},{"x": 361,"y": 3.31},{"x": 364,"y": 3.319},{"x": 365,"y": 3.321},{"x": 367,"y": 3.327},{"x": 368,"y": 3.329},{"x": 370,"y": 3.335},{"x": 371,"y": 3.337},{"x": 372,"y": 3.34},{"x": 373,"y": 3.342},{"x": 375,"y": 3.348},{"x": 377,"y": 3.352},{"x": 378,"y": 3.355},{"x": 379,"y": 3.357},{"x": 380,"y": 3.36},{"x": 381,"y": 3.362},{"x": 382,"y": 3.365},{"x": 384,"y": 3.369},{"x": 385,"y": 3.372},{"x": 388,"y": 3.378},{"x": 389,"y": 3.381},{"x": 393,"y": 3.389},{"x": 394,"y": 3.392},{"x": 407,"y": 3.418},{"x": 408,"y": 3.419},{"x": 412,"y": 3.427},{"x": 413,"y": 3.428},{"x": 416,"y": 3.434},{"x": 417,"y": 3.435},{"x": 419,"y": 3.439},{"x": 420,"y": 3.44},{"x": 421,"y": 3.442},{"x": 422,"y": 3.443},{"x": 423,"y": 3.445},{"x": 424,"y": 3.446},{"x": 426,"y": 3.45},{"x": 428,"y": 3.452},{"x": 429,"y": 3.454},{"x": 430,"y": 3.455},{"x": 431,"y": 3.457},{"x": 433,"y": 3.459},{"x": 434,"y": 3.461},{"x": 436,"y": 3.463},{"x": 437,"y": 3.465},{"x": 440,"y": 3.468},{"x": 441,"y": 3.47},{"x": 449,"y": 3.478},{"x": 450,"y": 3.48},{"x": 451,"y": 3.481},{"x": 452,"y": 3.481},{"x": 460,"y": 3.489},{"x": 461,"y": 3.489},{"x": 464,"y": 3.492},{"x": 465,"y": 3.492},{"x": 467,"y": 3.494},{"x": 468,"y": 3.494},{"x": 470,"y": 3.496},{"x": 471,"y": 3.496},{"x": 472,"y": 3.497},{"x": 473,"y": 3.497},{"x": 475,"y": 3.499},{"x": 477,"y": 3.499},{"x": 478,"y": 3.5},{"x": 479,"y": 3.5},{"x": 480,"y": 3.501},{"x": 481,"y": 3.501},{"x": 482,"y": 3.502},{"x": 484,"y": 3.502},{"x": 485,"y": 3.503},{"x": 488,"y": 3.503},{"x": 489,"y": 3.504},{"x": 493,"y": 3.504},{"x": 494,"y": 3.505},{"x": 500,"y": 3.505}]|color=orange}} | |||
|luckgrade05={{#widget:Chart|uniqueId=LuckGrade05|data=[{"x": 0,"y": 1},{"x": 1,"y": 1.012},{"x": 3,"y": 1.034},{"x": 4,"y": 1.046},{"x": 5,"y": 1.057},{"x": 6,"y": 1.069},{"x": 8,"y": 1.091},{"x": 9,"y": 1.103},{"x": 12,"y": 1.136},{"x": 13,"y": 1.148},{"x": 18,"y": 1.203},{"x": 19,"y": 1.215},{"x": 26,"y": 1.292},{"x": 27,"y": 1.302},{"x": 32,"y": 1.357},{"x": 33,"y": 1.367},{"x": 36,"y": 1.4},{"x": 37,"y": 1.41},{"x": 38,"y": 1.421},{"x": 39,"y": 1.431},{"x": 41,"y": 1.453},{"x": 42,"y": 1.463},{"x": 43,"y": 1.474},{"x": 44,"y": 1.484},{"x": 45,"y": 1.495},{"x": 46,"y": 1.505},{"x": 47,"y": 1.516},{"x": 49,"y": 1.536},{"x": 50,"y": 1.547},{"x": 51,"y": 1.557},{"x": 52,"y": 1.568},{"x": 55,"y": 1.598},{"x": 56,"y": 1.609},{"x": 61,"y": 1.659},{"x": 62,"y": 1.67},{"x": 69,"y": 1.74},{"x": 70,"y": 1.749},{"x": 75,"y": 1.799},{"x": 76,"y": 1.808},{"x": 79,"y": 1.838},{"x": 80,"y": 1.847},{"x": 82,"y": 1.867},{"x": 83,"y": 1.876},{"x": 84,"y": 1.886},{"x": 85,"y": 1.895},{"x": 86,"y": 1.905},{"x": 87,"y": 1.914},{"x": 88,"y": 1.924},{"x": 89,"y": 1.933},{"x": 90,"y": 1.943},{"x": 91,"y": 1.952},{"x": 92,"y": 1.962},{"x": 94,"y": 1.98},{"x": 95,"y": 1.99},{"x": 97,"y": 2.008},{"x": 98,"y": 2.018},{"x": 101,"y": 2.045},{"x": 102,"y": 2.055},{"x": 116,"y": 2.181},{"x": 117,"y": 2.189},{"x": 121,"y": 2.225},{"x": 122,"y": 2.233},{"x": 124,"y": 2.251},{"x": 125,"y": 2.259},{"x": 126,"y": 2.268},{"x": 127,"y": 2.276},{"x": 129,"y": 2.294},{"x": 130,"y": 2.302},{"x": 131,"y": 2.311},{"x": 132,"y": 2.319},{"x": 133,"y": 2.328},{"x": 135,"y": 2.344},{"x": 136,"y": 2.353},{"x": 137,"y": 2.361},{"x": 138,"y": 2.37},{"x": 141,"y": 2.394},{"x": 142,"y": 2.403},{"x": 145,"y": 2.427},{"x": 146,"y": 2.436},{"x": 159,"y": 2.54},{"x": 160,"y": 2.547},{"x": 164,"y": 2.579},{"x": 165,"y": 2.586},{"x": 167,"y": 2.602},{"x": 168,"y": 2.609},{"x": 170,"y": 2.625},{"x": 171,"y": 2.632},{"x": 172,"y": 2.64},{"x": 173,"y": 2.647},{"x": 174,"y": 2.655},{"x": 175,"y": 2.662},{"x": 176,"y": 2.67},{"x": 177,"y": 2.677},{"x": 178,"y": 2.685},{"x": 180,"y": 2.699},{"x": 181,"y": 2.707},{"x": 183,"y": 2.721},{"x": 184,"y": 2.729},{"x": 186,"y": 2.743},{"x": 187,"y": 2.751},{"x": 205,"y": 2.877},{"x": 206,"y": 2.883},{"x": 209,"y": 2.904},{"x": 210,"y": 2.91},{"x": 212,"y": 2.924},{"x": 213,"y": 2.93},{"x": 214,"y": 2.937},{"x": 215,"y": 2.943},{"x": 216,"y": 2.95},{"x": 217,"y": 2.956},{"x": 218,"y": 2.963},{"x": 219,"y": 2.969},{"x": 220,"y": 2.976},{"x": 221,"y": 2.982},{"x": 222,"y": 2.989},{"x": 223,"y": 2.995},{"x": 224,"y": 3.002},{"x": 226,"y": 3.014},{"x": 227,"y": 3.021},{"x": 230,"y": 3.039},{"x": 231,"y": 3.046},{"x": 248,"y": 3.148},{"x": 249,"y": 3.153},{"x": 252,"y": 3.171},{"x": 253,"y": 3.176},{"x": 255,"y": 3.188},{"x": 256,"y": 3.193},{"x": 257,"y": 3.199},{"x": 258,"y": 3.204},{"x": 260,"y": 3.216},{"x": 261,"y": 3.221},{"x": 262,"y": 3.227},{"x": 263,"y": 3.232},{"x": 264,"y": 3.238},{"x": 266,"y": 3.248},{"x": 267,"y": 3.254},{"x": 269,"y": 3.264},{"x": 270,"y": 3.27},{"x": 272,"y": 3.28},{"x": 273,"y": 3.286},{"x": 278,"y": 3.311},{"x": 279,"y": 3.317},{"x": 287,"y": 3.357},{"x": 288,"y": 3.361},{"x": 293,"y": 3.386},{"x": 294,"y": 3.39},{"x": 297,"y": 3.405},{"x": 298,"y": 3.409},{"x": 299,"y": 3.414},{"x": 300,"y": 3.418},{"x": 302,"y": 3.428},{"x": 303,"y": 3.432},{"x": 304,"y": 3.437},{"x": 305,"y": 3.441},{"x": 306,"y": 3.446},{"x": 307,"y": 3.45},{"x": 308,"y": 3.455},{"x": 310,"y": 3.463},{"x": 311,"y": 3.468},{"x": 313,"y": 3.476},{"x": 314,"y": 3.481},{"x": 316,"y": 3.489},{"x": 317,"y": 3.494},{"x": 323,"y": 3.518},{"x": 324,"y": 3.523},{"x": 329,"y": 3.543},{"x": 330,"y": 3.546},{"x": 336,"y": 3.57},{"x": 337,"y": 3.573},{"x": 340,"y": 3.585},{"x": 341,"y": 3.588},{"x": 342,"y": 3.592},{"x": 343,"y": 3.595},{"x": 345,"y": 3.603},{"x": 346,"y": 3.606},{"x": 347,"y": 3.61},{"x": 348,"y": 3.613},{"x": 349,"y": 3.617},{"x": 350,"y": 3.62},{"x": 351,"y": 3.624},{"x": 352,"y": 3.627},{"x": 353,"y": 3.631},{"x": 355,"y": 3.637},{"x": 356,"y": 3.641},{"x": 359,"y": 3.65},{"x": 360,"y": 3.654},{"x": 364,"y": 3.666},{"x": 365,"y": 3.67},{"x": 376,"y": 3.703},{"x": 377,"y": 3.705},{"x": 381,"y": 3.717},{"x": 382,"y": 3.719},{"x": 384,"y": 3.725},{"x": 385,"y": 3.727},{"x": 387,"y": 3.733},{"x": 388,"y": 3.735},{"x": 389,"y": 3.738},{"x": 390,"y": 3.74},{"x": 391,"y": 3.743},{"x": 392,"y": 3.745},{"x": 393,"y": 3.748},{"x": 394,"y": 3.75},{"x": 395,"y": 3.753},{"x": 396,"y": 3.755},{"x": 397,"y": 3.758},{"x": 399,"y": 3.762},{"x": 400,"y": 3.765},{"x": 403,"y": 3.771},{"x": 404,"y": 3.774},{"x": 409,"y": 3.784},{"x": 410,"y": 3.787},{"x": 417,"y": 3.801},{"x": 418,"y": 3.802},{"x": 423,"y": 3.812},{"x": 424,"y": 3.813},{"x": 427,"y": 3.819},{"x": 428,"y": 3.82},{"x": 430,"y": 3.824},{"x": 431,"y": 3.825},{"x": 432,"y": 3.827},{"x": 433,"y": 3.828},{"x": 434,"y": 3.83},{"x": 435,"y": 3.831},{"x": 436,"y": 3.833},{"x": 437,"y": 3.834},{"x": 438,"y": 3.836},{"x": 439,"y": 3.837},{"x": 440,"y": 3.839},{"x": 442,"y": 3.841},{"x": 443,"y": 3.843},{"x": 445,"y": 3.845},{"x": 446,"y": 3.847},{"x": 450,"y": 3.851},{"x": 451,"y": 3.853},{"x": 463,"y": 3.865},{"x": 464,"y": 3.865},{"x": 468,"y": 3.869},{"x": 469,"y": 3.869},{"x": 471,"y": 3.871},{"x": 472,"y": 3.871},{"x": 474,"y": 3.873},{"x": 475,"y": 3.873},{"x": 476,"y": 3.874},{"x": 477,"y": 3.874},{"x": 478,"y": 3.875},{"x": 479,"y": 3.875},{"x": 480,"y": 3.876},{"x": 481,"y": 3.876},{"x": 482,"y": 3.877},{"x": 483,"y": 3.877},{"x": 484,"y": 3.878},{"x": 486,"y": 3.878},{"x": 487,"y": 3.879},{"x": 490,"y": 3.879},{"x": 491,"y": 3.88},{"x": 495,"y": 3.88},{"x": 496,"y": 3.881},{"x": 500,"y": 3.881}]|color=orange}} | |||
|luckgrade06={{#widget:Chart|uniqueId=LuckGrade06|data=[{"x": 0,"y": 1},{"x": 6,"y": 1.078},{"x": 7,"y": 1.09},{"x": 11,"y": 1.142},{"x": 12,"y": 1.154},{"x": 14,"y": 1.18},{"x": 15,"y": 1.192},{"x": 16,"y": 1.205},{"x": 17,"y": 1.217},{"x": 19,"y": 1.243},{"x": 20,"y": 1.255},{"x": 21,"y": 1.268},{"x": 23,"y": 1.292},{"x": 24,"y": 1.305},{"x": 25,"y": 1.317},{"x": 26,"y": 1.33},{"x": 29,"y": 1.366},{"x": 30,"y": 1.379},{"x": 34,"y": 1.427},{"x": 35,"y": 1.44},{"x": 43,"y": 1.536},{"x": 44,"y": 1.547},{"x": 48,"y": 1.595},{"x": 49,"y": 1.606},{"x": 52,"y": 1.642},{"x": 53,"y": 1.653},{"x": 54,"y": 1.665},{"x": 55,"y": 1.676},{"x": 57,"y": 1.7},{"x": 58,"y": 1.711},{"x": 59,"y": 1.723},{"x": 61,"y": 1.745},{"x": 62,"y": 1.757},{"x": 63,"y": 1.768},{"x": 64,"y": 1.78},{"x": 66,"y": 1.802},{"x": 67,"y": 1.814},{"x": 71,"y": 1.858},{"x": 72,"y": 1.87},{"x": 83,"y": 1.991},{"x": 84,"y": 2.001},{"x": 87,"y": 2.034},{"x": 88,"y": 2.044},{"x": 91,"y": 2.077},{"x": 92,"y": 2.087},{"x": 93,"y": 2.098},{"x": 94,"y": 2.108},{"x": 95,"y": 2.119},{"x": 96,"y": 2.129},{"x": 97,"y": 2.14},{"x": 98,"y": 2.15},{"x": 99,"y": 2.161},{"x": 100,"y": 2.171},{"x": 101,"y": 2.182},{"x": 103,"y": 2.202},{"x": 104,"y": 2.213},{"x": 106,"y": 2.233},{"x": 107,"y": 2.244},{"x": 113,"y": 2.304},{"x": 114,"y": 2.315},{"x": 118,"y": 2.355},{"x": 119,"y": 2.364},{"x": 125,"y": 2.424},{"x": 126,"y": 2.433},{"x": 128,"y": 2.453},{"x": 129,"y": 2.462},{"x": 131,"y": 2.482},{"x": 132,"y": 2.491},{"x": 133,"y": 2.501},{"x": 134,"y": 2.51},{"x": 135,"y": 2.52},{"x": 136,"y": 2.529},{"x": 137,"y": 2.539},{"x": 138,"y": 2.548},{"x": 139,"y": 2.558},{"x": 141,"y": 2.576},{"x": 142,"y": 2.586},{"x": 144,"y": 2.604},{"x": 145,"y": 2.614},{"x": 150,"y": 2.659},{"x": 151,"y": 2.669},{"x": 158,"y": 2.732},{"x": 159,"y": 2.74},{"x": 163,"y": 2.776},{"x": 164,"y": 2.784},{"x": 167,"y": 2.811},{"x": 168,"y": 2.819},{"x": 170,"y": 2.837},{"x": 171,"y": 2.845},{"x": 172,"y": 2.854},{"x": 173,"y": 2.862},{"x": 174,"y": 2.871},{"x": 175,"y": 2.879},{"x": 176,"y": 2.888},{"x": 178,"y": 2.904},{"x": 179,"y": 2.913},{"x": 181,"y": 2.929},{"x": 182,"y": 2.938},{"x": 185,"y": 2.962},{"x": 186,"y": 2.971},{"x": 200,"y": 3.083},{"x": 201,"y": 3.09},{"x": 204,"y": 3.114},{"x": 205,"y": 3.121},{"x": 207,"y": 3.137},{"x": 208,"y": 3.144},{"x": 209,"y": 3.152},{"x": 210,"y": 3.159},{"x": 211,"y": 3.167},{"x": 212,"y": 3.174},{"x": 213,"y": 3.182},{"x": 214,"y": 3.189},{"x": 215,"y": 3.197},{"x": 216,"y": 3.204},{"x": 217,"y": 3.212},{"x": 219,"y": 3.226},{"x": 220,"y": 3.234},{"x": 223,"y": 3.255},{"x": 224,"y": 3.263},{"x": 239,"y": 3.368},{"x": 240,"y": 3.374},{"x": 243,"y": 3.395},{"x": 244,"y": 3.401},{"x": 245,"y": 3.408},{"x": 246,"y": 3.414},{"x": 248,"y": 3.428},{"x": 249,"y": 3.434},{"x": 250,"y": 3.441},{"x": 251,"y": 3.447},{"x": 252,"y": 3.454},{"x": 253,"y": 3.46},{"x": 254,"y": 3.467},{"x": 256,"y": 3.479},{"x": 257,"y": 3.486},{"x": 259,"y": 3.498},{"x": 260,"y": 3.505},{"x": 264,"y": 3.529},{"x": 265,"y": 3.536},{"x": 274,"y": 3.59},{"x": 275,"y": 3.595},{"x": 279,"y": 3.619},{"x": 280,"y": 3.624},{"x": 283,"y": 3.642},{"x": 284,"y": 3.647},{"x": 285,"y": 3.653},{"x": 286,"y": 3.658},{"x": 287,"y": 3.664},{"x": 288,"y": 3.669},{"x": 289,"y": 3.675},{"x": 290,"y": 3.68},{"x": 291,"y": 3.686},{"x": 292,"y": 3.691},{"x": 293,"y": 3.697},{"x": 294,"y": 3.702},{"x": 295,"y": 3.708},{"x": 298,"y": 3.723},{"x": 299,"y": 3.729},{"x": 303,"y": 3.749},{"x": 304,"y": 3.755},{"x": 312,"y": 3.795},{"x": 313,"y": 3.799},{"x": 318,"y": 3.824},{"x": 319,"y": 3.828},{"x": 321,"y": 3.838},{"x": 322,"y": 3.842},{"x": 324,"y": 3.852},{"x": 325,"y": 3.856},{"x": 326,"y": 3.861},{"x": 327,"y": 3.865},{"x": 328,"y": 3.87},{"x": 329,"y": 3.874},{"x": 330,"y": 3.879},{"x": 332,"y": 3.887},{"x": 333,"y": 3.892},{"x": 335,"y": 3.9},{"x": 336,"y": 3.905},{"x": 339,"y": 3.917},{"x": 340,"y": 3.922},{"x": 353,"y": 3.974},{"x": 354,"y": 3.977},{"x": 358,"y": 3.993},{"x": 359,"y": 3.996},{"x": 361,"y": 4.004},{"x": 362,"y": 4.007},{"x": 363,"y": 4.011},{"x": 364,"y": 4.014},{"x": 365,"y": 4.018},{"x": 366,"y": 4.021},{"x": 367,"y": 4.025},{"x": 368,"y": 4.028},{"x": 369,"y": 4.032},{"x": 371,"y": 4.038},{"x": 372,"y": 4.042},{"x": 374,"y": 4.048},{"x": 375,"y": 4.052},{"x": 378,"y": 4.061},{"x": 379,"y": 4.065},{"x": 391,"y": 4.101},{"x": 392,"y": 4.103},{"x": 396,"y": 4.115},{"x": 397,"y": 4.117},{"x": 399,"y": 4.123},{"x": 400,"y": 4.125},{"x": 401,"y": 4.128},{"x": 402,"y": 4.13},{"x": 403,"y": 4.133},{"x": 404,"y": 4.135},{"x": 405,"y": 4.138},{"x": 406,"y": 4.14},{"x": 407,"y": 4.143},{"x": 408,"y": 4.145},{"x": 409,"y": 4.148},{"x": 411,"y": 4.152},{"x": 412,"y": 4.155},{"x": 415,"y": 4.161},{"x": 416,"y": 4.164},{"x": 432,"y": 4.196},{"x": 433,"y": 4.197},{"x": 435,"y": 4.201},{"x": 436,"y": 4.202},{"x": 438,"y": 4.206},{"x": 439,"y": 4.207},{"x": 440,"y": 4.209},{"x": 441,"y": 4.21},{"x": 443,"y": 4.214},{"x": 445,"y": 4.216},{"x": 446,"y": 4.218},{"x": 447,"y": 4.219},{"x": 448,"y": 4.221},{"x": 450,"y": 4.223},{"x": 451,"y": 4.225},{"x": 454,"y": 4.228},{"x": 455,"y": 4.23},{"x": 469,"y": 4.244},{"x": 470,"y": 4.244},{"x": 473,"y": 4.247},{"x": 474,"y": 4.247},{"x": 476,"y": 4.249},{"x": 477,"y": 4.249},{"x": 478,"y": 4.25},{"x": 479,"y": 4.25},{"x": 481,"y": 4.252},{"x": 482,"y": 4.252},{"x": 483,"y": 4.253},{"x": 485,"y": 4.253},{"x": 486,"y": 4.254},{"x": 488,"y": 4.254},{"x": 489,"y": 4.255},{"x": 491,"y": 4.255},{"x": 492,"y": 4.256},{"x": 499,"y": 4.256},{"x": 500,"y": 4.257}]|color=orange}} | |||
|luckgrade07={{#widget:Chart|uniqueId=LuckGrade07|data=[{"x": 0,"y": 1},{"x": 1,"y": 1.014},{"x": 3,"y": 1.04},{"x": 4,"y": 1.054},{"x": 5,"y": 1.067},{"x": 6,"y": 1.081},{"x": 8,"y": 1.107},{"x": 9,"y": 1.121},{"x": 13,"y": 1.173},{"x": 14,"y": 1.187},{"x": 24,"y": 1.317},{"x": 25,"y": 1.329},{"x": 29,"y": 1.381},{"x": 30,"y": 1.393},{"x": 32,"y": 1.419},{"x": 33,"y": 1.431},{"x": 34,"y": 1.444},{"x": 35,"y": 1.456},{"x": 37,"y": 1.482},{"x": 39,"y": 1.506},{"x": 40,"y": 1.519},{"x": 41,"y": 1.531},{"x": 42,"y": 1.544},{"x": 44,"y": 1.568},{"x": 45,"y": 1.581},{"x": 47,"y": 1.605},{"x": 48,"y": 1.618},{"x": 64,"y": 1.81},{"x": 65,"y": 1.821},{"x": 67,"y": 1.845},{"x": 68,"y": 1.856},{"x": 70,"y": 1.88},{"x": 71,"y": 1.891},{"x": 73,"y": 1.915},{"x": 74,"y": 1.926},{"x": 75,"y": 1.938},{"x": 77,"y": 1.96},{"x": 78,"y": 1.972},{"x": 79,"y": 1.983},{"x": 80,"y": 1.995},{"x": 82,"y": 2.017},{"x": 83,"y": 2.029},{"x": 87,"y": 2.073},{"x": 88,"y": 2.085},{"x": 99,"y": 2.206},{"x": 100,"y": 2.216},{"x": 103,"y": 2.249},{"x": 104,"y": 2.259},{"x": 106,"y": 2.281},{"x": 107,"y": 2.291},{"x": 109,"y": 2.313},{"x": 110,"y": 2.323},{"x": 111,"y": 2.334},{"x": 112,"y": 2.344},{"x": 113,"y": 2.355},{"x": 114,"y": 2.365},{"x": 115,"y": 2.376},{"x": 117,"y": 2.396},{"x": 118,"y": 2.407},{"x": 121,"y": 2.437},{"x": 122,"y": 2.448},{"x": 127,"y": 2.498},{"x": 128,"y": 2.509},{"x": 132,"y": 2.549},{"x": 133,"y": 2.558},{"x": 139,"y": 2.618},{"x": 140,"y": 2.627},{"x": 142,"y": 2.647},{"x": 143,"y": 2.656},{"x": 145,"y": 2.676},{"x": 146,"y": 2.685},{"x": 147,"y": 2.695},{"x": 148,"y": 2.704},{"x": 149,"y": 2.714},{"x": 150,"y": 2.723},{"x": 151,"y": 2.733},{"x": 152,"y": 2.742},{"x": 153,"y": 2.752},{"x": 155,"y": 2.77},{"x": 156,"y": 2.78},{"x": 159,"y": 2.807},{"x": 160,"y": 2.817},{"x": 174,"y": 2.943},{"x": 175,"y": 2.951},{"x": 178,"y": 2.978},{"x": 179,"y": 2.986},{"x": 181,"y": 3.004},{"x": 182,"y": 3.012},{"x": 183,"y": 3.021},{"x": 184,"y": 3.029},{"x": 185,"y": 3.038},{"x": 186,"y": 3.046},{"x": 187,"y": 3.055},{"x": 188,"y": 3.063},{"x": 189,"y": 3.072},{"x": 190,"y": 3.08},{"x": 191,"y": 3.089},{"x": 193,"y": 3.105},{"x": 194,"y": 3.114},{"x": 198,"y": 3.146},{"x": 199,"y": 3.155},{"x": 209,"y": 3.235},{"x": 210,"y": 3.242},{"x": 214,"y": 3.274},{"x": 215,"y": 3.281},{"x": 217,"y": 3.297},{"x": 218,"y": 3.304},{"x": 220,"y": 3.32},{"x": 221,"y": 3.327},{"x": 222,"y": 3.335},{"x": 223,"y": 3.342},{"x": 224,"y": 3.35},{"x": 225,"y": 3.357},{"x": 226,"y": 3.365},{"x": 228,"y": 3.379},{"x": 229,"y": 3.387},{"x": 231,"y": 3.401},{"x": 232,"y": 3.409},{"x": 237,"y": 3.444},{"x": 238,"y": 3.452},{"x": 244,"y": 3.494},{"x": 245,"y": 3.5},{"x": 250,"y": 3.535},{"x": 251,"y": 3.541},{"x": 253,"y": 3.555},{"x": 254,"y": 3.561},{"x": 256,"y": 3.575},{"x": 257,"y": 3.581},{"x": 258,"y": 3.588},{"x": 259,"y": 3.594},{"x": 260,"y": 3.601},{"x": 261,"y": 3.607},{"x": 262,"y": 3.614},{"x": 263,"y": 3.62},{"x": 264,"y": 3.627},{"x": 266,"y": 3.639},{"x": 267,"y": 3.646},{"x": 270,"y": 3.664},{"x": 271,"y": 3.671},{"x": 286,"y": 3.761},{"x": 287,"y": 3.766},{"x": 290,"y": 3.784},{"x": 291,"y": 3.789},{"x": 292,"y": 3.795},{"x": 293,"y": 3.8},{"x": 295,"y": 3.812},{"x": 296,"y": 3.817},{"x": 297,"y": 3.823},{"x": 298,"y": 3.828},{"x": 299,"y": 3.834},{"x": 301,"y": 3.844},{"x": 302,"y": 3.85},{"x": 304,"y": 3.86},{"x": 305,"y": 3.866},{"x": 308,"y": 3.881},{"x": 309,"y": 3.887},{"x": 322,"y": 3.952},{"x": 323,"y": 3.956},{"x": 326,"y": 3.971},{"x": 327,"y": 3.975},{"x": 329,"y": 3.985},{"x": 330,"y": 3.989},{"x": 331,"y": 3.994},{"x": 332,"y": 3.998},{"x": 334,"y": 4.008},{"x": 336,"y": 4.016},{"x": 337,"y": 4.021},{"x": 338,"y": 4.025},{"x": 339,"y": 4.03},{"x": 341,"y": 4.038},{"x": 342,"y": 4.043},{"x": 345,"y": 4.055},{"x": 346,"y": 4.06},{"x": 358,"y": 4.108},{"x": 359,"y": 4.111},{"x": 363,"y": 4.127},{"x": 364,"y": 4.13},{"x": 366,"y": 4.138},{"x": 367,"y": 4.141},{"x": 368,"y": 4.145},{"x": 369,"y": 4.148},{"x": 370,"y": 4.152},{"x": 371,"y": 4.155},{"x": 372,"y": 4.159},{"x": 373,"y": 4.162},{"x": 374,"y": 4.166},{"x": 375,"y": 4.169},{"x": 376,"y": 4.173},{"x": 379,"y": 4.182},{"x": 380,"y": 4.186},{"x": 383,"y": 4.195},{"x": 384,"y": 4.199},{"x": 394,"y": 4.229},{"x": 395,"y": 4.231},{"x": 399,"y": 4.243},{"x": 400,"y": 4.245},{"x": 402,"y": 4.251},{"x": 403,"y": 4.253},{"x": 405,"y": 4.259},{"x": 406,"y": 4.261},{"x": 407,"y": 4.264},{"x": 408,"y": 4.266},{"x": 409,"y": 4.269},{"x": 410,"y": 4.271},{"x": 411,"y": 4.274},{"x": 413,"y": 4.278},{"x": 414,"y": 4.281},{"x": 416,"y": 4.285},{"x": 417,"y": 4.288},{"x": 421,"y": 4.296},{"x": 422,"y": 4.299},{"x": 431,"y": 4.317},{"x": 432,"y": 4.318},{"x": 436,"y": 4.326},{"x": 437,"y": 4.327},{"x": 439,"y": 4.331},{"x": 440,"y": 4.332},{"x": 442,"y": 4.336},{"x": 443,"y": 4.337},{"x": 444,"y": 4.339},{"x": 445,"y": 4.34},{"x": 446,"y": 4.342},{"x": 447,"y": 4.343},{"x": 448,"y": 4.345},{"x": 450,"y": 4.347},{"x": 451,"y": 4.349},{"x": 453,"y": 4.351},{"x": 454,"y": 4.353},{"x": 458,"y": 4.357},{"x": 459,"y": 4.359},{"x": 467,"y": 4.367},{"x": 468,"y": 4.367},{"x": 473,"y": 4.372},{"x": 474,"y": 4.372},{"x": 476,"y": 4.374},{"x": 477,"y": 4.374},{"x": 479,"y": 4.376},{"x": 480,"y": 4.376},{"x": 481,"y": 4.377},{"x": 482,"y": 4.377},{"x": 483,"y": 4.378},{"x": 484,"y": 4.378},{"x": 485,"y": 4.379},{"x": 487,"y": 4.379},{"x": 488,"y": 4.38},{"x": 490,"y": 4.38},{"x": 491,"y": 4.381},{"x": 496,"y": 4.381},{"x": 497,"y": 4.382},{"x": 500,"y": 4.382}]|color=orange}} | |||
|luckgrade08={{#widget:Chart|uniqueId=LuckGrade08|data=[{"x": 0,"y": 1},{"x": 1,"y": 1.014},{"x": 3,"y": 1.04},{"x": 4,"y": 1.054},{"x": 5,"y": 1.067},{"x": 6,"y": 1.081},{"x": 8,"y": 1.107},{"x": 9,"y": 1.121},{"x": 13,"y": 1.173},{"x": 14,"y": 1.187},{"x": 24,"y": 1.317},{"x": 25,"y": 1.329},{"x": 29,"y": 1.381},{"x": 30,"y": 1.393},{"x": 32,"y": 1.419},{"x": 33,"y": 1.431},{"x": 34,"y": 1.444},{"x": 35,"y": 1.456},{"x": 37,"y": 1.482},{"x": 39,"y": 1.506},{"x": 40,"y": 1.519},{"x": 41,"y": 1.531},{"x": 42,"y": 1.544},{"x": 44,"y": 1.568},{"x": 45,"y": 1.581},{"x": 47,"y": 1.605},{"x": 48,"y": 1.618},{"x": 64,"y": 1.81},{"x": 65,"y": 1.821},{"x": 67,"y": 1.845},{"x": 68,"y": 1.856},{"x": 70,"y": 1.88},{"x": 71,"y": 1.891},{"x": 73,"y": 1.915},{"x": 74,"y": 1.926},{"x": 75,"y": 1.938},{"x": 77,"y": 1.96},{"x": 78,"y": 1.972},{"x": 79,"y": 1.983},{"x": 80,"y": 1.995},{"x": 82,"y": 2.017},{"x": 83,"y": 2.029},{"x": 87,"y": 2.073},{"x": 88,"y": 2.085},{"x": 99,"y": 2.206},{"x": 100,"y": 2.216},{"x": 103,"y": 2.249},{"x": 104,"y": 2.259},{"x": 106,"y": 2.281},{"x": 107,"y": 2.291},{"x": 109,"y": 2.313},{"x": 110,"y": 2.323},{"x": 111,"y": 2.334},{"x": 112,"y": 2.344},{"x": 113,"y": 2.355},{"x": 114,"y": 2.365},{"x": 115,"y": 2.376},{"x": 117,"y": 2.396},{"x": 118,"y": 2.407},{"x": 121,"y": 2.437},{"x": 122,"y": 2.448},{"x": 127,"y": 2.498},{"x": 128,"y": 2.509},{"x": 132,"y": 2.549},{"x": 133,"y": 2.558},{"x": 139,"y": 2.618},{"x": 140,"y": 2.627},{"x": 142,"y": 2.647},{"x": 143,"y": 2.656},{"x": 145,"y": 2.676},{"x": 146,"y": 2.685},{"x": 147,"y": 2.695},{"x": 148,"y": 2.704},{"x": 149,"y": 2.714},{"x": 150,"y": 2.723},{"x": 151,"y": 2.733},{"x": 152,"y": 2.742},{"x": 153,"y": 2.752},{"x": 155,"y": 2.77},{"x": 156,"y": 2.78},{"x": 159,"y": 2.807},{"x": 160,"y": 2.817},{"x": 174,"y": 2.943},{"x": 175,"y": 2.951},{"x": 178,"y": 2.978},{"x": 179,"y": 2.986},{"x": 181,"y": 3.004},{"x": 182,"y": 3.012},{"x": 183,"y": 3.021},{"x": 184,"y": 3.029},{"x": 185,"y": 3.038},{"x": 186,"y": 3.046},{"x": 187,"y": 3.055},{"x": 188,"y": 3.063},{"x": 189,"y": 3.072},{"x": 190,"y": 3.08},{"x": 191,"y": 3.089},{"x": 193,"y": 3.105},{"x": 194,"y": 3.114},{"x": 198,"y": 3.146},{"x": 199,"y": 3.155},{"x": 209,"y": 3.235},{"x": 210,"y": 3.242},{"x": 214,"y": 3.274},{"x": 215,"y": 3.281},{"x": 217,"y": 3.297},{"x": 218,"y": 3.304},{"x": 220,"y": 3.32},{"x": 221,"y": 3.327},{"x": 222,"y": 3.335},{"x": 223,"y": 3.342},{"x": 224,"y": 3.35},{"x": 225,"y": 3.357},{"x": 226,"y": 3.365},{"x": 228,"y": 3.379},{"x": 229,"y": 3.387},{"x": 231,"y": 3.401},{"x": 232,"y": 3.409},{"x": 237,"y": 3.444},{"x": 238,"y": 3.452},{"x": 244,"y": 3.494},{"x": 245,"y": 3.5},{"x": 250,"y": 3.535},{"x": 251,"y": 3.541},{"x": 253,"y": 3.555},{"x": 254,"y": 3.561},{"x": 256,"y": 3.575},{"x": 257,"y": 3.581},{"x": 258,"y": 3.588},{"x": 259,"y": 3.594},{"x": 260,"y": 3.601},{"x": 261,"y": 3.607},{"x": 262,"y": 3.614},{"x": 263,"y": 3.62},{"x": 264,"y": 3.627},{"x": 266,"y": 3.639},{"x": 267,"y": 3.646},{"x": 270,"y": 3.664},{"x": 271,"y": 3.671},{"x": 286,"y": 3.761},{"x": 287,"y": 3.766},{"x": 290,"y": 3.784},{"x": 291,"y": 3.789},{"x": 292,"y": 3.795},{"x": 293,"y": 3.8},{"x": 295,"y": 3.812},{"x": 296,"y": 3.817},{"x": 297,"y": 3.823},{"x": 298,"y": 3.828},{"x": 299,"y": 3.834},{"x": 301,"y": 3.844},{"x": 302,"y": 3.85},{"x": 304,"y": 3.86},{"x": 305,"y": 3.866},{"x": 308,"y": 3.881},{"x": 309,"y": 3.887},{"x": 322,"y": 3.952},{"x": 323,"y": 3.956},{"x": 326,"y": 3.971},{"x": 327,"y": 3.975},{"x": 329,"y": 3.985},{"x": 330,"y": 3.989},{"x": 331,"y": 3.994},{"x": 332,"y": 3.998},{"x": 334,"y": 4.008},{"x": 336,"y": 4.016},{"x": 337,"y": 4.021},{"x": 338,"y": 4.025},{"x": 339,"y": 4.03},{"x": 341,"y": 4.038},{"x": 342,"y": 4.043},{"x": 345,"y": 4.055},{"x": 346,"y": 4.06},{"x": 358,"y": 4.108},{"x": 359,"y": 4.111},{"x": 363,"y": 4.127},{"x": 364,"y": 4.13},{"x": 366,"y": 4.138},{"x": 367,"y": 4.141},{"x": 368,"y": 4.145},{"x": 369,"y": 4.148},{"x": 370,"y": 4.152},{"x": 371,"y": 4.155},{"x": 372,"y": 4.159},{"x": 373,"y": 4.162},{"x": 374,"y": 4.166},{"x": 375,"y": 4.169},{"x": 376,"y": 4.173},{"x": 379,"y": 4.182},{"x": 380,"y": 4.186},{"x": 383,"y": 4.195},{"x": 384,"y": 4.199},{"x": 394,"y": 4.229},{"x": 395,"y": 4.231},{"x": 399,"y": 4.243},{"x": 400,"y": 4.245},{"x": 402,"y": 4.251},{"x": 403,"y": 4.253},{"x": 405,"y": 4.259},{"x": 406,"y": 4.261},{"x": 407,"y": 4.264},{"x": 408,"y": 4.266},{"x": 409,"y": 4.269},{"x": 410,"y": 4.271},{"x": 411,"y": 4.274},{"x": 413,"y": 4.278},{"x": 414,"y": 4.281},{"x": 416,"y": 4.285},{"x": 417,"y": 4.288},{"x": 421,"y": 4.296},{"x": 422,"y": 4.299},{"x": 431,"y": 4.317},{"x": 432,"y": 4.318},{"x": 436,"y": 4.326},{"x": 437,"y": 4.327},{"x": 439,"y": 4.331},{"x": 440,"y": 4.332},{"x": 442,"y": 4.336},{"x": 443,"y": 4.337},{"x": 444,"y": 4.339},{"x": 445,"y": 4.34},{"x": 446,"y": 4.342},{"x": 447,"y": 4.343},{"x": 448,"y": 4.345},{"x": 450,"y": 4.347},{"x": 451,"y": 4.349},{"x": 453,"y": 4.351},{"x": 454,"y": 4.353},{"x": 458,"y": 4.357},{"x": 459,"y": 4.359},{"x": 467,"y": 4.367},{"x": 468,"y": 4.367},{"x": 473,"y": 4.372},{"x": 474,"y": 4.372},{"x": 476,"y": 4.374},{"x": 477,"y": 4.374},{"x": 479,"y": 4.376},{"x": 480,"y": 4.376},{"x": 481,"y": 4.377},{"x": 482,"y": 4.377},{"x": 483,"y": 4.378},{"x": 484,"y": 4.378},{"x": 485,"y": 4.379},{"x": 487,"y": 4.379},{"x": 488,"y": 4.38},{"x": 490,"y": 4.38},{"x": 491,"y": 4.381},{"x": 496,"y": 4.381},{"x": 497,"y": 4.382},{"x": 500,"y": 4.382}]|color=orange}} | |||
|magicaldamagereduction=Magic Resistance governs your Magical Damage Reduction. | |||
-300 Magic Resistance starts at -595% Magical Damage Reduction. | |||
*-300 -> -595% | |||
*-300 to -15 = 2% each, up to -25% | |||
*-15 to 10 = 1% each, up to 0% | |||
*10 to 250 = 0.25% each, up to 60% | |||
*250 to 350 = 0.2% each, up to 80% | |||
*350 to 500 = 0.1% each, up to 95% | |||
{{#widget:Chart|uniqueId=MagicalDamageReduction|data=[{"x": -300,"y": -5.95},{"x": -15,"y": -0.25},{"x": 10,"y": 0},{"x": 250,"y": 0.6},{"x": 350,"y": 0.8},{"x": 500,"y": 0.95}]|color=orange}} | |||
|magicalinteractionspeed=Will governs your Magical Interaction Speed. | |||
{{# | 0 Will starts at -75% Magical Interaction Speed. | ||
*0 -> -75% | |||
*0 to 15 = 5% each, up to 0% | |||
*15 to 25 = 7% each, up to 70% | |||
*25 to 35 = 5% each, up to 120% | |||
*35 to 84 = 2% each, up to 218% | |||
*84 to 85 = 1% each, up to 219% | |||
*85 to 86 = 3% each, up to 222% | |||
*86 to 100 = 2% each, up to 250% | |||
{{#widget:Chart|uniqueId=MagicalInteractionSpeed|data=[{"x": 0,"y": -0.75},{"x": 15,"y": 0},{"x": 25,"y": 0.7},{"x": 35,"y": 1.2},{"x": 84,"y": 2.18},{"x": 85,"y": 2.19},{"x": 86,"y": 2.22},{"x": 100,"y": 2.5}]|color=orange}} | |||
|magicalpower=Will governs your Magical Power. | |||
0 Will starts at 0 Magical Power. | |||
*0 -> 0 | |||
*0 to 100 = 1 each, up to 100 | |||
{{#widget:Chart|uniqueId=MagicalPower|data=[{"x": 0,"y": 0},{"x": 100,"y": 100}]|color=orange}} | |||
|magicalpowerbonus=Magical Power governs your Magical Power Bonus. | |||
0 Magical Power starts at -90% Magical Power Bonus. | |||
*0 -> -90% | |||
*0 to 1 = 0% each, up to -90% | |||
*1 to 5 = 10% each, up to -50% | |||
*5 to 15 = 5% each, up to 0% | |||
*15 to 21 = 2.5% each, up to 15% | |||
*21 to 40 = 2% each, up to 53% | |||
*40 to 50 = 1% each, up to 63% | |||
*50 to 100 = 0.5% each, up to 88% | |||
{{#widget:Chart|uniqueId=MagicalPowerBonus|data=[{"x": 0,"y": -0.9},{"x": 1,"y": -0.9},{"x": 5,"y": -0.5},{"x": 15,"y": 0},{"x": 21,"y": 0.15},{"x": 40,"y": 0.53},{"x": 50,"y": 0.63},{"x": 100,"y": 0.88}]|color=orange}} | |||
|magicresistance=Will governs your Magic Resistance. | |||
0 Will starts at -20 Magic Resistance. | |||
*0 -> -20 | |||
*0 to 5 = 4 each, up to 0 | |||
*5 to 15 = 3 each, up to 30 | |||
*15 to 33 = 4 each, up to 102 | |||
*33 to 48 = 3 each, up to 147 | |||
*48 to 58 = 2 each, up to 167 | |||
*58 to 100 = 1 each, up to 209 | |||
{{#widget:Chart|uniqueId=MagicResistance|data=[{"x": 0,"y": -20},{"x": 5,"y": 0},{"x": 15,"y": 30},{"x": 33,"y": 102},{"x": 48,"y": 147},{"x": 58,"y": 167},{"x": 100,"y": 209}]|color=orange}} | |||
|manualdexterity=Dexterity governs your Manual Dexterity. | |||
0 Dexterity starts at -15% Manual Dexterity. | |||
*0 -> -15% | |||
*0 to 15 = 1% each, up to 0% | |||
*15 to 23 = 3% each, up to 24% | |||
*23 to 31 = 2% each, up to 40% | |||
*31 to 37 = 1% each, up to 46% | |||
*37 to 45 = 0.5% each, up to 50% | |||
*45 to 95 = 0.1% each, up to 55% | |||
*95 to 100 = 0% each, up to 55% | |||
{{#widget:Chart|uniqueId=ManualDexterity|data=[{"x": 0,"y": -0.15},{"x": 15,"y": 0},{"x": 23,"y": 0.24},{"x": 31,"y": 0.4},{"x": 37,"y": 0.46},{"x": 45,"y": 0.5},{"x": 95,"y": 0.55},{"x": 100,"y": 0.55}]|color=orange}} | |||
|memorycapacity=Knowledge governs your Memory Capacity. | |||
0 Knowledge starts at 0 Memory Capacity. | |||
*0 -> 0 | |||
*0 to 6 = 0 each, up to 0 | |||
*6 to 100 = 1 each, up to 94 | |||
{{#widget:Chart|uniqueId=MemoryCapacity|data=[{"x": 0,"y": 0},{"x": 6,"y": 0},{"x": 100,"y": 94}]|color=orange}} | |||
|memoryrecovery=Knowledge governs your Memory Recovery. | |||
0 Knowledge starts at 43% Memory Recovery. | |||
*0 -> 43% | |||
*0 to 28 = 1.5% each, up to 85% | |||
*28 to 35 = 5% each, up to 120% | |||
*35 to 84 = 2% each, up to 218% | |||
*84 to 85 = 1% each, up to 219% | |||
*85 to 86 = 3% each, up to 222% | |||
*86 to 100 = 2% each, up to 250% | |||
{{#widget:Chart|uniqueId=MemoryRecovery|data=[{"x": 0,"y": 0.43},{"x": 28,"y": 0.85},{"x": 35,"y": 1.2},{"x": 84,"y": 2.18},{"x": 85,"y": 2.19},{"x": 86,"y": 2.22},{"x": 100,"y": 2.5}]|color=orange}} | |||
|movespeed=Agility governs your Move Speed. | |||
0 Agility starts at -10 Move Speed. | |||
*0 -> -10 | |||
*0 to 10 = 0.5 each, up to -5 | |||
*10 to 15 = 1 each, up to 0 | |||
*15 to 75 = 0.75 each, up to 45 | |||
*75 to 100 = 0.5 each, up to 57.5 | |||
{{#widget:Chart|uniqueId=MoveSpeed|data=[{"x": 0,"y": -10},{"x": 10,"y": -5},{"x": 15,"y": 0},{"x": 75,"y": 45},{"x": 100,"y": 57.5}]|color=orange}} | |||
|persuasiveness=Resourcefulness governs your Persuasiveness. | |||
0 Resourcefulness starts at 0 Persuasiveness. | |||
*0 -> 0 | |||
*0 to 35 = 1 each, up to 35 | |||
*35 to 71 = 0.5 each, up to 53 | |||
*71 to 99 = 0.25 each, up to 60 | |||
*99 to 100 = 0 each, up to 60 | |||
{{#widget:Chart|uniqueId=Persuasiveness|data=[{"x": 0,"y": 0},{"x": 35,"y": 35},{"x": 71,"y": 53},{"x": 99,"y": 60},{"x": 100,"y": 60}]|color=orange}} | |||
|physicaldamagereduction=Armor Rating governs your Physical Damage Reduction. | |||
-300 Armor Rating starts at -619% Physical Damage Reduction. | |||
*-300 -> -619% | |||
*-300 to -3 = 2% each, up to -25% | |||
*-3 to 22 = 1% each, up to 0% | |||
*22 to 31 = 0.5% each, up to 4.5% | |||
*31 to 42 = 0.4% each, up to 8.9% | |||
*42 to 52 = 0.3% each, up to 11.9% | |||
*52 to 62 = 0.2% each, up to 13.9% | |||
*62 to 112 = 0.1% each, up to 18.9% | |||
*112 to 175 = 0.2% each, up to 31.5% | |||
*175 to 230 = 0.25% each, up to 45.25% | |||
*230 to 317 = 0.2% each, up to 62.65% | |||
*317 to 353 = 0.1% each, up to 66.25% | |||
*353 to 368 = 0.05% each, up to 67% | |||
*368 to 369 = 0.03% each, up to 67.03% | |||
*369 to 370 = 0.07% each, up to 67.1% | |||
*370 to 428 = 0.05% each, up to 70% | |||
*428 to 429 = -0.075% each, up to 69.925% | |||
*429 to 450 = 0.025% each, up to 70.45% | |||
*450 to 500 = 0.02% each, up to 71.45% | |||
{{#widget:Chart|uniqueId=PhysicalDamageReduction|data=[{"x": -300,"y": -6.19},{"x": -3,"y": -0.25},{"x": 22,"y": 0},{"x": 31,"y": 0.045},{"x": 42,"y": 0.089},{"x": 52,"y": 0.119},{"x": 62,"y": 0.139},{"x": 112,"y": 0.189},{"x": 175,"y": 0.315},{"x": 230,"y": 0.4525},{"x": 317,"y": 0.6265},{"x": 353,"y": 0.6625},{"x": 368,"y": 0.67},{"x": 369,"y": 0.6703},{"x": 370,"y": 0.671},{"x": 428,"y": 0.7},{"x": 429,"y": 0.69925},{"x": 450,"y": 0.7045},{"x": 500,"y": 0.7145}]|color=orange}} | |||
|physicalpower=Strength governs your Physical Power. | |||
0 Strength starts at 0 Physical Power. | |||
*0 -> 0 | *0 -> 0 | ||
*0 to 100 = 1 each, up to 100 | *0 to 100 = 1 each, up to 100 | ||
{{#widget:Chart|uniqueId=PhysicalPower|data=[{"x": | |||
{{#widget:Chart|uniqueId=PhysicalPower|data=[{"x": 0,"y": 0},{"x": 100,"y": 100}]|color=orange}} | |||
|physicalpowerbonus=Physical Power governs your Physical Power Bonus. | |||
0 Physical Power starts at -80% Physical Power Bonus. | |||
*0 -> -80% | |||
}} | *0 to 5 = 10% each, up to -30% | ||
*5 to 7 = 5% each, up to -20% | |||
*7 to 11 = 3% each, up to -8% | |||
*11 to 15 = 2% each, up to 0% | |||
*15 to 50 = 1% each, up to 35% | |||
*50 to 100 = 0.5% each, up to 60% | |||
{{#widget:Chart|uniqueId=PhysicalPowerBonus|data=[{"x": 0,"y": -0.8},{"x": 5,"y": -0.3},{"x": 7,"y": -0.2},{"x": 11,"y": -0.08},{"x": 15,"y": 0},{"x": 50,"y": 0.35},{"x": 100,"y": 0.6}]|color=orange}} | |||
|regularinteractionspeed=Agility and Resourcefulness governs your Regular Interaction Speed. | |||
Agility gives 0.4 Regular Interaction Speed Rating, and Resourcefulness gives 0.6 Regular Interaction Speed Rating, which then get summed into a total Regular Interaction Speed Rating and finally converted into Regular Interaction Speed using the graph. | |||
<code> Regular Interaction Speed Rating = Agility * 0.4 + Resourcefulness * 0.6</code> | |||
0 Regular Interaction Speed Rating starts at -26% Regular Interaction Speed. | |||
*0 -> -26% | |||
*0 to 7 = 2% each, up to -12% | |||
*7 to 15 = 1.5% each, up to 0% | |||
*15 to 20 = 7% each, up to 35% | |||
*20 to 25 = 6% each, up to 65% | |||
*25 to 30 = 5% each, up to 90% | |||
*30 to 35 = 4% each, up to 110% | |||
*35 to 40 = 3% each, up to 125% | |||
*40 to 45 = 2% each, up to 135% | |||
*45 to 100 = 1% each, up to 190% | |||
{{#widget:Chart|uniqueId=RegularInteractionSpeed|data=[{"x": 0,"y": -0.26},{"x": 7,"y": -0.12},{"x": 15,"y": 0},{"x": 20,"y": 0.35},{"x": 25,"y": 0.65},{"x": 30,"y": 0.9},{"x": 35,"y": 1.1},{"x": 40,"y": 1.25},{"x": 45,"y": 1.35},{"x": 100,"y": 1.9}]|color=orange}} | |||
|spellcastingspeed=Knowledge governs your Spell Casting Speed. | |||
0 Knowledge starts at -60% Spell Casting Speed. | |||
*0 -> -60% | |||
*0 to 5 = 5% each, up to -35% | |||
*5 to 10 = 4% each, up to -15% | |||
*10 to 20 = 3% each, up to 15% | |||
*20 to 50 = 2.5% each, up to 90% | |||
*50 to 80 = 2% each, up to 150% | |||
*80 to 100 = 1.5% each, up to 180% | |||
{{#widget:Chart|uniqueId=SpellCastingSpeed|data=[{"x": 0,"y": -0.6},{"x": 5,"y": -0.35},{"x": 10,"y": -0.15},{"x": 20,"y": 0.15},{"x": 50,"y": 0.9},{"x": 80,"y": 1.5},{"x": 100,"y": 1.8}]|color=orange}} | |||
|#default =Could not find stat in Template:Stats_Data}} | |||
</div> | |||
<div style="width:400px;"> | |||
</div> | |||
</div> | |||
<div class="mw-collapsible mw-collapsed" style="width: fit-content"> | |||
[https://en.wikipedia.org/wiki/LaTeX LaTeX] Formula | |||
<div class="mw-collapsible-content"> | |||
Can be pasted into [https://www.desmos.com/calculator Desmos] or other LaTeX editors for quick use of the equation. | |||
Triple click to select all. | |||
Note: Some browsers will add an extra return carriage (line end) after the formula. Remove it before pasting for best results. | |||
{{#switch:{{lc:{{{1|}}}}} | |||
|actionspeed=<pre>A_{ctionSpeed}(S_{um})=\left\{0 \le S_{um}<10:-0.38+0.03\left|S_{um}-0\right|,10 \le S_{um}<13:-0.08+0.02\left|S_{um}-10\right|,13 \le S_{um}<25:-0.02+0.01\left|S_{um}-13\right|,25 \le S_{um}<41:0.1+0.015\left|S_{um}-25\right|,41 \le S_{um}<50:0.34+0.01\left|S_{um}-41\right|,50 \le S_{um}<100:0.43+0.005\left|S_{um}-50\right|\right\}</pre> | |||
|basehealth=<pre>B_{aseHealth}(S_{um})=\left\{0 \le S_{um}<10:60+3\left|S_{um}-0\right|,10 \le S_{um}<50:90+2\left|S_{um}-10\right|,50 \le S_{um}<75:170+1\left|S_{um}-50\right|,75 \le S_{um}<100:195+0.5\left|S_{um}-75\right|\right\}</pre> | |||
|buffduration=<pre>B_{uffDuration}(W_{ill})=\left\{0 \le W_{ill}<5:-0.8+0.1\left|W_{ill}-0\right|,5 \le W_{ill}<7:-0.3+0.05\left|W_{ill}-5\right|,7 \le W_{ill}<11:-0.2+0.03\left|W_{ill}-7\right|,11 \le W_{ill}<15:-0.08+0.02\left|W_{ill}-11\right|,15 \le W_{ill}<50:0+0.01\left|W_{ill}-15\right|,50 \le W_{ill}<100:0.35+0.005\left|W_{ill}-50\right|\right\}</pre> | |||
|cooldownreduction=<pre>C_{ooldownReduction}(R_{esourcefulness})=\left\{0 \le R_{esourcefulness}<20:-0.3+0.02\left|R_{esourcefulness}-0\right|,20 \le R_{esourcefulness}<50:0.1+0.01\left|R_{esourcefulness}-20\right|,50 \le R_{esourcefulness}<100:0.4+0.005\left|R_{esourcefulness}-50\right|\right\}</pre> | |||
|debuffduration=<pre>D_{ebuffDuration}(W_{ill})=\left\{0 \le W_{ill}<1:4+-1.667\left|W_{ill}-0\right|,1 \le W_{ill}<2:2.333+-0.833\left|W_{ill}-1\right|,2 \le W_{ill}<3:1.5+-0.5\left|W_{ill}-2\right|,3 \le W_{ill}<4:1+-0.333\left|W_{ill}-3\right|,4 \le W_{ill}<5:0.667+-0.238\left|W_{ill}-4\right|,5 \le W_{ill}<6:0.429+-0.096\left|W_{ill}-5\right|,6 \le W_{ill}<7:0.333+-0.083\left|W_{ill}-6\right|,7 \le W_{ill}<8:0.25+-0.045\left|W_{ill}-7\right|,8 \le W_{ill}<9:0.205+-0.042\left|W_{ill}-8\right|,9 \le W_{ill}<10:0.163+-0.039\left|W_{ill}-9\right|,10 \le W_{ill}<11:0.124+-0.037\left|W_{ill}-10\right|,11 \le W_{ill}<12:0.087+-0.023\left|W_{ill}-11\right|,12 \le W_{ill}<14:0.064+-0.022\left|W_{ill}-12\right|,14 \le W_{ill}<15:0.02+-0.02\left|W_{ill}-14\right|,15 \le W_{ill}<17:0+-0.01\left|W_{ill}-15\right|,17 \le W_{ill}<19:-0.02+-0.009\left|W_{ill}-17\right|,19 \le W_{ill}<20:-0.038+-0.01\left|W_{ill}-19\right|,20 \le W_{ill}<21:-0.048+-0.009\left|W_{ill}-20\right|,21 \le W_{ill}<22:-0.057+-0.008\left|W_{ill}-21\right|,22 \le W_{ill}<24:-0.065+-0.009\left|W_{ill}-22\right|,24 \le W_{ill}<29:-0.083+-0.008\left|W_{ill}-24\right|,29 \le W_{ill}<30:-0.123+-0.007\left|W_{ill}-29\right|,30 \le W_{ill}<31:-0.13+-0.008\left|W_{ill}-30\right|,31 \le W_{ill}<32:-0.138+-0.007\left|W_{ill}-31\right|,32 \le W_{ill}<33:-0.145+-0.008\left|W_{ill}-32\right|,33 \le W_{ill}<36:-0.153+-0.007\left|W_{ill}-33\right|,36 \le W_{ill}<37:-0.174+-0.006\left|W_{ill}-36\right|,37 \le W_{ill}<39:-0.18+-0.007\left|W_{ill}-37\right|,39 \le W_{ill}<41:-0.194+-0.006\left|W_{ill}-39\right|,41 \le W_{ill}<42:-0.206+-0.007\left|W_{ill}-41\right|,42 \le W_{ill}<46:-0.213+-0.006\left|W_{ill}-42\right|,46 \le W_{ill}<47:-0.237+-0.005\left|W_{ill}-46\right|,47 \le W_{ill}<49:-0.242+-0.006\left|W_{ill}-47\right|,49 \le W_{ill}<50:-0.254+-0.005\left|W_{ill}-49\right|,50 \le W_{ill}<52:-0.259+-0.003\left|W_{ill}-50\right|,52 \le W_{ill}<53:-0.265+-0.002\left|W_{ill}-52\right|,53 \le W_{ill}<55:-0.267+-0.003\left|W_{ill}-53\right|,55 \le W_{ill}<56:-0.273+-0.002\left|W_{ill}-55\right|,56 \le W_{ill}<58:-0.275+-0.003\left|W_{ill}-56\right|,58 \le W_{ill}<59:-0.281+-0.002\left|W_{ill}-58\right|,59 \le W_{ill}<60:-0.283+-0.003\left|W_{ill}-59\right|,60 \le W_{ill}<61:-0.286+-0.002\left|W_{ill}-60\right|,61 \le W_{ill}<62:-0.288+-0.003\left|W_{ill}-61\right|,62 \le W_{ill}<63:-0.291+-0.002\left|W_{ill}-62\right|,63 \le W_{ill}<64:-0.293+-0.003\left|W_{ill}-63\right|,64 \le W_{ill}<65:-0.296+-0.002\left|W_{ill}-64\right|,65 \le W_{ill}<66:-0.298+-0.003\left|W_{ill}-65\right|,66 \le W_{ill}<67:-0.301+-0.002\left|W_{ill}-66\right|,67 \le W_{ill}<68:-0.303+-0.003\left|W_{ill}-67\right|,68 \le W_{ill}<70:-0.306+-0.002\left|W_{ill}-68\right|,70 \le W_{ill}<71:-0.31+-0.003\left|W_{ill}-70\right|,71 \le W_{ill}<73:-0.313+-0.002\left|W_{ill}-71\right|,73 \le W_{ill}<74:-0.317+-0.003\left|W_{ill}-73\right|,74 \le W_{ill}<76:-0.32+-0.002\left|W_{ill}-74\right|,76 \le W_{ill}<77:-0.324+-0.003\left|W_{ill}-76\right|,77 \le W_{ill}<80:-0.327+-0.002\left|W_{ill}-77\right|,80 \le W_{ill}<81:-0.333+-0.003\left|W_{ill}-80\right|,81 \le W_{ill}<86:-0.336+-0.002\left|W_{ill}-81\right|,86 \le W_{ill}<87:-0.346+-0.003\left|W_{ill}-86\right|,87 \le W_{ill}<100:-0.349+-0.002\left|W_{ill}-87\right|\right\}</pre> | |||
|healthrecovery=<pre>H_{ealthRecovery}(V_{igor})=\left\{0 \le V_{igor}<5:-0.55+0.05\left|V_{igor}-0\right|,5 \le V_{igor}<15:-0.3+0.03\left|V_{igor}-5\right|,15 \le V_{igor}<25:0+0.07\left|V_{igor}-15\right|,25 \le V_{igor}<35:0.7+0.05\left|V_{igor}-25\right|,35 \le V_{igor}<84:1.2+0.02\left|V_{igor}-35\right|,84 \le V_{igor}<85:2.18+0.01\left|V_{igor}-84\right|,85 \le V_{igor}<86:2.19+0.03\left|V_{igor}-85\right|,86 \le V_{igor}<100:2.22+0.02\left|V_{igor}-86\right|\right\}</pre> | |||
|itemequipspeed=<pre>I_{temEquipSpeed}(D_{exterity})=\left\{0 \le D_{exterity}<1:-0.95+0\left|D_{exterity}-0\right|,1 \le D_{exterity}<2:-0.95+0.04\left|D_{exterity}-1\right|,2 \le D_{exterity}<15:-0.91+0.07\left|D_{exterity}-2\right|,15 \le D_{exterity}<35:0+0.05\left|D_{exterity}-15\right|,35 \le D_{exterity}<70:1+0.02\left|D_{exterity}-35\right|,70 \le D_{exterity}<100:1.7+0.01\left|D_{exterity}-70\right|\right\}</pre> | |||
|luckgrade00=<pre>L_{uckGrade00}(L_{uckGrade})=\left\{0 \le L_{uckGrade}<500:1+-0.001\left|L_{uckGrade}-0\right|\right\}</pre> | |||
|luckgrade01=<pre>L_{uckGrade01}(L_{uckGrade})=\left\{0 \le L_{uckGrade}<500:1+-0.001\left|L_{uckGrade}-0\right|\right\}</pre> | |||
|luckgrade02=<pre>L_{uckGrade02}(L_{uckGrade})=\left\{0 \le L_{uckGrade}<1:1+0\left|L_{uckGrade}-0\right|,1 \le L_{uckGrade}<2:1+-0.001\left|L_{uckGrade}-1\right|,2 \le L_{uckGrade}<3:0.999+0\left|L_{uckGrade}-2\right|,3 \le L_{uckGrade}<4:0.999+-0.001\left|L_{uckGrade}-3\right|,4 \le L_{uckGrade}<5:0.998+0\left|L_{uckGrade}-4\right|,5 \le L_{uckGrade}<6:0.998+-0.001\left|L_{uckGrade}-5\right|,6 \le L_{uckGrade}<7:0.997+0\left|L_{uckGrade}-6\right|,7 \le L_{uckGrade}<8:0.997+-0.001\left|L_{uckGrade}-7\right|,8 \le L_{uckGrade}<9:0.996+0\left|L_{uckGrade}-8\right|,9 \le L_{uckGrade}<10:0.996+-0.001\left|L_{uckGrade}-9\right|,10 \le L_{uckGrade}<11:0.995+0\left|L_{uckGrade}-10\right|,11 \le L_{uckGrade}<12:0.995+-0.001\left|L_{uckGrade}-11\right|,12 \le L_{uckGrade}<13:0.994+0\left|L_{uckGrade}-12\right|,13 \le L_{uckGrade}<14:0.994+-0.001\left|L_{uckGrade}-13\right|,14 \le L_{uckGrade}<15:0.993+0\left|L_{uckGrade}-14\right|,15 \le L_{uckGrade}<16:0.993+-0.001\left|L_{uckGrade}-15\right|,16 \le L_{uckGrade}<17:0.992+0\left|L_{uckGrade}-16\right|,17 \le L_{uckGrade}<18:0.992+-0.001\left|L_{uckGrade}-17\right|,18 \le L_{uckGrade}<19:0.991+0\left|L_{uckGrade}-18\right|,19 \le L_{uckGrade}<20:0.991+-0.001\left|L_{uckGrade}-19\right|,20 \le L_{uckGrade}<21:0.99+0\left|L_{uckGrade}-20\right|,21 \le L_{uckGrade}<22:0.99+-0.001\left|L_{uckGrade}-21\right|,22 \le L_{uckGrade}<23:0.989+0\left|L_{uckGrade}-22\right|,23 \le L_{uckGrade}<24:0.989+-0.001\left|L_{uckGrade}-23\right|,24 \le L_{uckGrade}<25:0.988+0\left|L_{uckGrade}-24\right|,25 \le L_{uckGrade}<26:0.988+-0.001\left|L_{uckGrade}-25\right|,26 \le L_{uckGrade}<27:0.987+0\left|L_{uckGrade}-26\right|,27 \le L_{uckGrade}<28:0.987+-0.001\left|L_{uckGrade}-27\right|,28 \le L_{uckGrade}<29:0.986+0\left|L_{uckGrade}-28\right|,29 \le L_{uckGrade}<30:0.986+-0.001\left|L_{uckGrade}-29\right|,30 \le L_{uckGrade}<31:0.985+0\left|L_{uckGrade}-30\right|,31 \le L_{uckGrade}<32:0.985+-0.001\left|L_{uckGrade}-31\right|,32 \le L_{uckGrade}<33:0.984+0\left|L_{uckGrade}-32\right|,33 \le L_{uckGrade}<34:0.984+-0.001\left|L_{uckGrade}-33\right|,34 \le L_{uckGrade}<35:0.983+0\left|L_{uckGrade}-34\right|,35 \le L_{uckGrade}<36:0.983+-0.001\left|L_{uckGrade}-35\right|,36 \le L_{uckGrade}<37:0.982+0\left|L_{uckGrade}-36\right|,37 \le L_{uckGrade}<38:0.982+-0.001\left|L_{uckGrade}-37\right|,38 \le L_{uckGrade}<39:0.981+0\left|L_{uckGrade}-38\right|,39 \le L_{uckGrade}<40:0.981+-0.001\left|L_{uckGrade}-39\right|,40 \le L_{uckGrade}<41:0.98+0\left|L_{uckGrade}-40\right|,41 \le L_{uckGrade}<42:0.98+-0.001\left|L_{uckGrade}-41\right|,42 \le L_{uckGrade}<43:0.979+0\left|L_{uckGrade}-42\right|,43 \le L_{uckGrade}<44:0.979+-0.001\left|L_{uckGrade}-43\right|,44 \le L_{uckGrade}<45:0.978+0\left|L_{uckGrade}-44\right|,45 \le L_{uckGrade}<46:0.978+-0.001\left|L_{uckGrade}-45\right|,46 \le L_{uckGrade}<47:0.977+0\left|L_{uckGrade}-46\right|,47 \le L_{uckGrade}<48:0.977+-0.001\left|L_{uckGrade}-47\right|,48 \le L_{uckGrade}<49:0.976+0\left|L_{uckGrade}-48\right|,49 \le L_{uckGrade}<50:0.976+-0.001\left|L_{uckGrade}-49\right|,50 \le L_{uckGrade}<51:0.975+0\left|L_{uckGrade}-50\right|,51 \le L_{uckGrade}<52:0.975+-0.001\left|L_{uckGrade}-51\right|,52 \le L_{uckGrade}<53:0.974+0\left|L_{uckGrade}-52\right|,53 \le L_{uckGrade}<54:0.974+-0.001\left|L_{uckGrade}-53\right|,54 \le L_{uckGrade}<55:0.973+0\left|L_{uckGrade}-54\right|,55 \le L_{uckGrade}<56:0.973+-0.001\left|L_{uckGrade}-55\right|,56 \le L_{uckGrade}<57:0.972+0\left|L_{uckGrade}-56\right|,57 \le L_{uckGrade}<58:0.972+-0.001\left|L_{uckGrade}-57\right|,58 \le L_{uckGrade}<59:0.971+0\left|L_{uckGrade}-58\right|,59 \le L_{uckGrade}<60:0.971+-0.001\left|L_{uckGrade}-59\right|,60 \le L_{uckGrade}<61:0.97+0\left|L_{uckGrade}-60\right|,61 \le L_{uckGrade}<62:0.97+-0.001\left|L_{uckGrade}-61\right|,62 \le L_{uckGrade}<63:0.969+0\left|L_{uckGrade}-62\right|,63 \le L_{uckGrade}<64:0.969+-0.001\left|L_{uckGrade}-63\right|,64 \le L_{uckGrade}<65:0.968+0\left|L_{uckGrade}-64\right|,65 \le L_{uckGrade}<66:0.968+-0.001\left|L_{uckGrade}-65\right|,66 \le L_{uckGrade}<67:0.967+0\left|L_{uckGrade}-66\right|,67 \le L_{uckGrade}<68:0.967+-0.001\left|L_{uckGrade}-67\right|,68 \le L_{uckGrade}<69:0.966+0\left|L_{uckGrade}-68\right|,69 \le L_{uckGrade}<70:0.966+-0.001\left|L_{uckGrade}-69\right|,70 \le L_{uckGrade}<71:0.965+0\left|L_{uckGrade}-70\right|,71 \le L_{uckGrade}<72:0.965+-0.001\left|L_{uckGrade}-71\right|,72 \le L_{uckGrade}<73:0.964+0\left|L_{uckGrade}-72\right|,73 \le L_{uckGrade}<74:0.964+-0.001\left|L_{uckGrade}-73\right|,74 \le L_{uckGrade}<75:0.963+0\left|L_{uckGrade}-74\right|,75 \le L_{uckGrade}<76:0.963+-0.001\left|L_{uckGrade}-75\right|,76 \le L_{uckGrade}<77:0.962+0\left|L_{uckGrade}-76\right|,77 \le L_{uckGrade}<78:0.962+-0.001\left|L_{uckGrade}-77\right|,78 \le L_{uckGrade}<79:0.961+0\left|L_{uckGrade}-78\right|,79 \le L_{uckGrade}<80:0.961+-0.001\left|L_{uckGrade}-79\right|,80 \le L_{uckGrade}<81:0.96+0\left|L_{uckGrade}-80\right|,81 \le L_{uckGrade}<82:0.96+-0.001\left|L_{uckGrade}-81\right|,82 \le L_{uckGrade}<83:0.959+0\left|L_{uckGrade}-82\right|,83 \le L_{uckGrade}<84:0.959+-0.001\left|L_{uckGrade}-83\right|,84 \le L_{uckGrade}<85:0.958+0\left|L_{uckGrade}-84\right|,85 \le L_{uckGrade}<86:0.958+-0.001\left|L_{uckGrade}-85\right|,86 \le L_{uckGrade}<87:0.957+0\left|L_{uckGrade}-86\right|,87 \le L_{uckGrade}<88:0.957+-0.001\left|L_{uckGrade}-87\right|,88 \le L_{uckGrade}<89:0.956+0\left|L_{uckGrade}-88\right|,89 \le L_{uckGrade}<90:0.956+-0.001\left|L_{uckGrade}-89\right|,90 \le L_{uckGrade}<91:0.955+0\left|L_{uckGrade}-90\right|,91 \le L_{uckGrade}<92:0.955+-0.001\left|L_{uckGrade}-91\right|,92 \le L_{uckGrade}<93:0.954+0\left|L_{uckGrade}-92\right|,93 \le L_{uckGrade}<94:0.954+-0.001\left|L_{uckGrade}-93\right|,94 \le L_{uckGrade}<95:0.953+0\left|L_{uckGrade}-94\right|,95 \le L_{uckGrade}<96:0.953+-0.001\left|L_{uckGrade}-95\right|,96 \le L_{uckGrade}<97:0.952+0\left|L_{uckGrade}-96\right|,97 \le L_{uckGrade}<98:0.952+-0.001\left|L_{uckGrade}-97\right|,98 \le L_{uckGrade}<99:0.951+0\left|L_{uckGrade}-98\right|,99 \le L_{uckGrade}<100:0.951+-0.001\left|L_{uckGrade}-99\right|,100 \le L_{uckGrade}<101:0.95+0\left|L_{uckGrade}-100\right|,101 \le L_{uckGrade}<102:0.95+-0.001\left|L_{uckGrade}-101\right|,102 \le L_{uckGrade}<103:0.949+0\left|L_{uckGrade}-102\right|,103 \le L_{uckGrade}<104:0.949+-0.001\left|L_{uckGrade}-103\right|,104 \le L_{uckGrade}<105:0.948+0\left|L_{uckGrade}-104\right|,105 \le L_{uckGrade}<106:0.948+-0.001\left|L_{uckGrade}-105\right|,106 \le L_{uckGrade}<107:0.947+0\left|L_{uckGrade}-106\right|,107 \le L_{uckGrade}<108:0.947+-0.001\left|L_{uckGrade}-107\right|,108 \le L_{uckGrade}<109:0.946+0\left|L_{uckGrade}-108\right|,109 \le L_{uckGrade}<110:0.946+-0.001\left|L_{uckGrade}-109\right|,110 \le L_{uckGrade}<111:0.945+0\left|L_{uckGrade}-110\right|,111 \le L_{uckGrade}<112:0.945+-0.001\left|L_{uckGrade}-111\right|,112 \le L_{uckGrade}<113:0.944+0\left|L_{uckGrade}-112\right|,113 \le L_{uckGrade}<114:0.944+-0.001\left|L_{uckGrade}-113\right|,114 \le L_{uckGrade}<115:0.943+0\left|L_{uckGrade}-114\right|,115 \le L_{uckGrade}<116:0.943+-0.001\left|L_{uckGrade}-115\right|,116 \le L_{uckGrade}<117:0.942+0\left|L_{uckGrade}-116\right|,117 \le L_{uckGrade}<118:0.942+-0.001\left|L_{uckGrade}-117\right|,118 \le L_{uckGrade}<119:0.941+0\left|L_{uckGrade}-118\right|,119 \le L_{uckGrade}<120:0.941+-0.001\left|L_{uckGrade}-119\right|,120 \le L_{uckGrade}<121:0.94+0\left|L_{uckGrade}-120\right|,121 \le L_{uckGrade}<122:0.94+-0.001\left|L_{uckGrade}-121\right|,122 \le L_{uckGrade}<123:0.939+0\left|L_{uckGrade}-122\right|,123 \le L_{uckGrade}<124:0.939+-0.001\left|L_{uckGrade}-123\right|,124 \le L_{uckGrade}<125:0.938+0\left|L_{uckGrade}-124\right|,125 \le L_{uckGrade}<126:0.938+-0.001\left|L_{uckGrade}-125\right|,126 \le L_{uckGrade}<127:0.937+0\left|L_{uckGrade}-126\right|,127 \le L_{uckGrade}<128:0.937+-0.001\left|L_{uckGrade}-127\right|,128 \le L_{uckGrade}<129:0.936+0\left|L_{uckGrade}-128\right|,129 \le L_{uckGrade}<130:0.936+-0.001\left|L_{uckGrade}-129\right|,130 \le L_{uckGrade}<131:0.935+0\left|L_{uckGrade}-130\right|,131 \le L_{uckGrade}<132:0.935+-0.001\left|L_{uckGrade}-131\right|,132 \le L_{uckGrade}<133:0.934+0\left|L_{uckGrade}-132\right|,133 \le L_{uckGrade}<134:0.934+-0.001\left|L_{uckGrade}-133\right|,134 \le L_{uckGrade}<135:0.933+0\left|L_{uckGrade}-134\right|,135 \le L_{uckGrade}<136:0.933+-0.001\left|L_{uckGrade}-135\right|,136 \le L_{uckGrade}<137:0.932+0\left|L_{uckGrade}-136\right|,137 \le L_{uckGrade}<138:0.932+-0.001\left|L_{uckGrade}-137\right|,138 \le L_{uckGrade}<139:0.931+0\left|L_{uckGrade}-138\right|,139 \le L_{uckGrade}<140:0.931+-0.001\left|L_{uckGrade}-139\right|,140 \le L_{uckGrade}<141:0.93+0\left|L_{uckGrade}-140\right|,141 \le L_{uckGrade}<142:0.93+-0.001\left|L_{uckGrade}-141\right|,142 \le L_{uckGrade}<143:0.929+0\left|L_{uckGrade}-142\right|,143 \le L_{uckGrade}<144:0.929+-0.001\left|L_{uckGrade}-143\right|,144 \le L_{uckGrade}<145:0.928+0\left|L_{uckGrade}-144\right|,145 \le L_{uckGrade}<146:0.928+-0.001\left|L_{uckGrade}-145\right|,146 \le L_{uckGrade}<147:0.927+0\left|L_{uckGrade}-146\right|,147 \le L_{uckGrade}<148:0.927+-0.001\left|L_{uckGrade}-147\right|,148 \le L_{uckGrade}<149:0.926+0\left|L_{uckGrade}-148\right|,149 \le L_{uckGrade}<150:0.926+-0.001\left|L_{uckGrade}-149\right|,150 \le L_{uckGrade}<151:0.925+0\left|L_{uckGrade}-150\right|,151 \le L_{uckGrade}<152:0.925+-0.001\left|L_{uckGrade}-151\right|,152 \le L_{uckGrade}<153:0.924+0\left|L_{uckGrade}-152\right|,153 \le L_{uckGrade}<154:0.924+-0.001\left|L_{uckGrade}-153\right|,154 \le L_{uckGrade}<155:0.923+0\left|L_{uckGrade}-154\right|,155 \le L_{uckGrade}<156:0.923+-0.001\left|L_{uckGrade}-155\right|,156 \le L_{uckGrade}<157:0.922+0\left|L_{uckGrade}-156\right|,157 \le L_{uckGrade}<158:0.922+-0.001\left|L_{uckGrade}-157\right|,158 \le L_{uckGrade}<159:0.921+0\left|L_{uckGrade}-158\right|,159 \le L_{uckGrade}<160:0.921+-0.001\left|L_{uckGrade}-159\right|,160 \le L_{uckGrade}<161:0.92+0\left|L_{uckGrade}-160\right|,161 \le L_{uckGrade}<162:0.92+-0.001\left|L_{uckGrade}-161\right|,162 \le L_{uckGrade}<163:0.919+0\left|L_{uckGrade}-162\right|,163 \le L_{uckGrade}<164:0.919+-0.001\left|L_{uckGrade}-163\right|,164 \le L_{uckGrade}<165:0.918+0\left|L_{uckGrade}-164\right|,165 \le L_{uckGrade}<166:0.918+-0.001\left|L_{uckGrade}-165\right|,166 \le L_{uckGrade}<167:0.917+0\left|L_{uckGrade}-166\right|,167 \le L_{uckGrade}<168:0.917+-0.001\left|L_{uckGrade}-167\right|,168 \le L_{uckGrade}<169:0.916+0\left|L_{uckGrade}-168\right|,169 \le L_{uckGrade}<170:0.916+-0.001\left|L_{uckGrade}-169\right|,170 \le L_{uckGrade}<171:0.915+0\left|L_{uckGrade}-170\right|,171 \le L_{uckGrade}<172:0.915+-0.001\left|L_{uckGrade}-171\right|,172 \le L_{uckGrade}<173:0.914+0\left|L_{uckGrade}-172\right|,173 \le L_{uckGrade}<174:0.914+-0.001\left|L_{uckGrade}-173\right|,174 \le L_{uckGrade}<175:0.913+0\left|L_{uckGrade}-174\right|,175 \le L_{uckGrade}<176:0.913+-0.001\left|L_{uckGrade}-175\right|,176 \le L_{uckGrade}<177:0.912+0\left|L_{uckGrade}-176\right|,177 \le L_{uckGrade}<178:0.912+-0.001\left|L_{uckGrade}-177\right|,178 \le L_{uckGrade}<179:0.911+0\left|L_{uckGrade}-178\right|,179 \le L_{uckGrade}<180:0.911+-0.001\left|L_{uckGrade}-179\right|,180 \le L_{uckGrade}<181:0.91+0\left|L_{uckGrade}-180\right|,181 \le L_{uckGrade}<182:0.91+-0.001\left|L_{uckGrade}-181\right|,182 \le L_{uckGrade}<183:0.909+0\left|L_{uckGrade}-182\right|,183 \le L_{uckGrade}<184:0.909+-0.001\left|L_{uckGrade}-183\right|,184 \le L_{uckGrade}<185:0.908+0\left|L_{uckGrade}-184\right|,185 \le L_{uckGrade}<186:0.908+-0.001\left|L_{uckGrade}-185\right|,186 \le L_{uckGrade}<187:0.907+0\left|L_{uckGrade}-186\right|,187 \le L_{uckGrade}<188:0.907+-0.001\left|L_{uckGrade}-187\right|,188 \le L_{uckGrade}<189:0.906+0\left|L_{uckGrade}-188\right|,189 \le L_{uckGrade}<190:0.906+-0.001\left|L_{uckGrade}-189\right|,190 \le L_{uckGrade}<191:0.905+0\left|L_{uckGrade}-190\right|,191 \le L_{uckGrade}<192:0.905+-0.001\left|L_{uckGrade}-191\right|,192 \le L_{uckGrade}<193:0.904+0\left|L_{uckGrade}-192\right|,193 \le L_{uckGrade}<194:0.904+-0.001\left|L_{uckGrade}-193\right|,194 \le L_{uckGrade}<195:0.903+0\left|L_{uckGrade}-194\right|,195 \le L_{uckGrade}<196:0.903+-0.001\left|L_{uckGrade}-195\right|,196 \le L_{uckGrade}<197:0.902+0\left|L_{uckGrade}-196\right|,197 \le L_{uckGrade}<198:0.902+-0.001\left|L_{uckGrade}-197\right|,198 \le L_{uckGrade}<199:0.901+0\left|L_{uckGrade}-198\right|,199 \le L_{uckGrade}<200:0.901+-0.001\left|L_{uckGrade}-199\right|,200 \le L_{uckGrade}<201:0.9+0\left|L_{uckGrade}-200\right|,201 \le L_{uckGrade}<202:0.9+-0.001\left|L_{uckGrade}-201\right|,202 \le L_{uckGrade}<203:0.899+0\left|L_{uckGrade}-202\right|,203 \le L_{uckGrade}<204:0.899+-0.001\left|L_{uckGrade}-203\right|,204 \le L_{uckGrade}<205:0.898+0\left|L_{uckGrade}-204\right|,205 \le L_{uckGrade}<206:0.898+-0.001\left|L_{uckGrade}-205\right|,206 \le L_{uckGrade}<207:0.897+0\left|L_{uckGrade}-206\right|,207 \le L_{uckGrade}<208:0.897+-0.001\left|L_{uckGrade}-207\right|,208 \le L_{uckGrade}<209:0.896+0\left|L_{uckGrade}-208\right|,209 \le L_{uckGrade}<210:0.896+-0.001\left|L_{uckGrade}-209\right|,210 \le L_{uckGrade}<211:0.895+0\left|L_{uckGrade}-210\right|,211 \le L_{uckGrade}<212:0.895+-0.001\left|L_{uckGrade}-211\right|,212 \le L_{uckGrade}<213:0.894+0\left|L_{uckGrade}-212\right|,213 \le L_{uckGrade}<214:0.894+-0.001\left|L_{uckGrade}-213\right|,214 \le L_{uckGrade}<215:0.893+0\left|L_{uckGrade}-214\right|,215 \le L_{uckGrade}<216:0.893+-0.001\left|L_{uckGrade}-215\right|,216 \le L_{uckGrade}<217:0.892+0\left|L_{uckGrade}-216\right|,217 \le L_{uckGrade}<218:0.892+-0.001\left|L_{uckGrade}-217\right|,218 \le L_{uckGrade}<219:0.891+0\left|L_{uckGrade}-218\right|,219 \le L_{uckGrade}<220:0.891+-0.001\left|L_{uckGrade}-219\right|,220 \le L_{uckGrade}<221:0.89+0\left|L_{uckGrade}-220\right|,221 \le L_{uckGrade}<222:0.89+-0.001\left|L_{uckGrade}-221\right|,222 \le L_{uckGrade}<223:0.889+0\left|L_{uckGrade}-222\right|,223 \le L_{uckGrade}<224:0.889+-0.001\left|L_{uckGrade}-223\right|,224 \le L_{uckGrade}<225:0.888+0\left|L_{uckGrade}-224\right|,225 \le L_{uckGrade}<226:0.888+-0.001\left|L_{uckGrade}-225\right|,226 \le L_{uckGrade}<227:0.887+0\left|L_{uckGrade}-226\right|,227 \le L_{uckGrade}<228:0.887+-0.001\left|L_{uckGrade}-227\right|,228 \le L_{uckGrade}<229:0.886+0\left|L_{uckGrade}-228\right|,229 \le L_{uckGrade}<230:0.886+-0.001\left|L_{uckGrade}-229\right|,230 \le L_{uckGrade}<231:0.885+0\left|L_{uckGrade}-230\right|,231 \le L_{uckGrade}<232:0.885+-0.001\left|L_{uckGrade}-231\right|,232 \le L_{uckGrade}<233:0.884+0\left|L_{uckGrade}-232\right|,233 \le L_{uckGrade}<234:0.884+-0.001\left|L_{uckGrade}-233\right|,234 \le L_{uckGrade}<235:0.883+0\left|L_{uckGrade}-234\right|,235 \le L_{uckGrade}<236:0.883+-0.001\left|L_{uckGrade}-235\right|,236 \le L_{uckGrade}<237:0.882+0\left|L_{uckGrade}-236\right|,237 \le L_{uckGrade}<238:0.882+-0.001\left|L_{uckGrade}-237\right|,238 \le L_{uckGrade}<239:0.881+0\left|L_{uckGrade}-238\right|,239 \le L_{uckGrade}<240:0.881+-0.001\left|L_{uckGrade}-239\right|,240 \le L_{uckGrade}<241:0.88+0\left|L_{uckGrade}-240\right|,241 \le L_{uckGrade}<242:0.88+-0.001\left|L_{uckGrade}-241\right|,242 \le L_{uckGrade}<243:0.879+0\left|L_{uckGrade}-242\right|,243 \le L_{uckGrade}<244:0.879+-0.001\left|L_{uckGrade}-243\right|,244 \le L_{uckGrade}<245:0.878+0\left|L_{uckGrade}-244\right|,245 \le L_{uckGrade}<246:0.878+-0.001\left|L_{uckGrade}-245\right|,246 \le L_{uckGrade}<247:0.877+0\left|L_{uckGrade}-246\right|,247 \le L_{uckGrade}<248:0.877+-0.001\left|L_{uckGrade}-247\right|,248 \le L_{uckGrade}<249:0.876+0\left|L_{uckGrade}-248\right|,249 \le L_{uckGrade}<250:0.876+-0.001\left|L_{uckGrade}-249\right|,250 \le L_{uckGrade}<251:0.875+0\left|L_{uckGrade}-250\right|,251 \le L_{uckGrade}<252:0.875+-0.001\left|L_{uckGrade}-251\right|,252 \le L_{uckGrade}<253:0.874+0\left|L_{uckGrade}-252\right|,253 \le L_{uckGrade}<254:0.874+-0.001\left|L_{uckGrade}-253\right|,254 \le L_{uckGrade}<255:0.873+0\left|L_{uckGrade}-254\right|,255 \le L_{uckGrade}<256:0.873+-0.001\left|L_{uckGrade}-255\right|,256 \le L_{uckGrade}<257:0.872+0\left|L_{uckGrade}-256\right|,257 \le L_{uckGrade}<258:0.872+-0.001\left|L_{uckGrade}-257\right|,258 \le L_{uckGrade}<259:0.871+0\left|L_{uckGrade}-258\right|,259 \le L_{uckGrade}<260:0.871+-0.001\left|L_{uckGrade}-259\right|,260 \le L_{uckGrade}<261:0.87+0\left|L_{uckGrade}-260\right|,261 \le L_{uckGrade}<262:0.87+-0.001\left|L_{uckGrade}-261\right|,262 \le L_{uckGrade}<263:0.869+0\left|L_{uckGrade}-262\right|,263 \le L_{uckGrade}<264:0.869+-0.001\left|L_{uckGrade}-263\right|,264 \le L_{uckGrade}<265:0.868+0\left|L_{uckGrade}-264\right|,265 \le L_{uckGrade}<266:0.868+-0.001\left|L_{uckGrade}-265\right|,266 \le L_{uckGrade}<267:0.867+0\left|L_{uckGrade}-266\right|,267 \le L_{uckGrade}<268:0.867+-0.001\left|L_{uckGrade}-267\right|,268 \le L_{uckGrade}<269:0.866+0\left|L_{uckGrade}-268\right|,269 \le L_{uckGrade}<270:0.866+-0.001\left|L_{uckGrade}-269\right|,270 \le L_{uckGrade}<271:0.865+0\left|L_{uckGrade}-270\right|,271 \le L_{uckGrade}<272:0.865+-0.001\left|L_{uckGrade}-271\right|,272 \le L_{uckGrade}<273:0.864+0\left|L_{uckGrade}-272\right|,273 \le L_{uckGrade}<274:0.864+-0.001\left|L_{uckGrade}-273\right|,274 \le L_{uckGrade}<275:0.863+0\left|L_{uckGrade}-274\right|,275 \le L_{uckGrade}<276:0.863+-0.001\left|L_{uckGrade}-275\right|,276 \le L_{uckGrade}<277:0.862+0\left|L_{uckGrade}-276\right|,277 \le L_{uckGrade}<278:0.862+-0.001\left|L_{uckGrade}-277\right|,278 \le L_{uckGrade}<279:0.861+0\left|L_{uckGrade}-278\right|,279 \le L_{uckGrade}<280:0.861+-0.001\left|L_{uckGrade}-279\right|,280 \le L_{uckGrade}<281:0.86+0\left|L_{uckGrade}-280\right|,281 \le L_{uckGrade}<282:0.86+-0.001\left|L_{uckGrade}-281\right|,282 \le L_{uckGrade}<283:0.859+0\left|L_{uckGrade}-282\right|,283 \le L_{uckGrade}<284:0.859+-0.001\left|L_{uckGrade}-283\right|,284 \le L_{uckGrade}<285:0.858+0\left|L_{uckGrade}-284\right|,285 \le L_{uckGrade}<286:0.858+-0.001\left|L_{uckGrade}-285\right|,286 \le L_{uckGrade}<287:0.857+0\left|L_{uckGrade}-286\right|,287 \le L_{uckGrade}<288:0.857+-0.001\left|L_{uckGrade}-287\right|,288 \le L_{uckGrade}<289:0.856+0\left|L_{uckGrade}-288\right|,289 \le L_{uckGrade}<290:0.856+-0.001\left|L_{uckGrade}-289\right|,290 \le L_{uckGrade}<291:0.855+0\left|L_{uckGrade}-290\right|,291 \le L_{uckGrade}<292:0.855+-0.001\left|L_{uckGrade}-291\right|,292 \le L_{uckGrade}<293:0.854+0\left|L_{uckGrade}-292\right|,293 \le L_{uckGrade}<294:0.854+-0.001\left|L_{uckGrade}-293\right|,294 \le L_{uckGrade}<295:0.853+0\left|L_{uckGrade}-294\right|,295 \le L_{uckGrade}<296:0.853+-0.001\left|L_{uckGrade}-295\right|,296 \le L_{uckGrade}<297:0.852+0\left|L_{uckGrade}-296\right|,297 \le L_{uckGrade}<298:0.852+-0.001\left|L_{uckGrade}-297\right|,298 \le L_{uckGrade}<299:0.851+0\left|L_{uckGrade}-298\right|,299 \le L_{uckGrade}<300:0.851+-0.001\left|L_{uckGrade}-299\right|,300 \le L_{uckGrade}<301:0.85+0\left|L_{uckGrade}-300\right|,301 \le L_{uckGrade}<302:0.85+-0.001\left|L_{uckGrade}-301\right|,302 \le L_{uckGrade}<303:0.849+0\left|L_{uckGrade}-302\right|,303 \le L_{uckGrade}<304:0.849+-0.001\left|L_{uckGrade}-303\right|,304 \le L_{uckGrade}<305:0.848+0\left|L_{uckGrade}-304\right|,305 \le L_{uckGrade}<306:0.848+-0.001\left|L_{uckGrade}-305\right|,306 \le L_{uckGrade}<307:0.847+0\left|L_{uckGrade}-306\right|,307 \le L_{uckGrade}<308:0.847+-0.001\left|L_{uckGrade}-307\right|,308 \le L_{uckGrade}<309:0.846+0\left|L_{uckGrade}-308\right|,309 \le L_{uckGrade}<310:0.846+-0.001\left|L_{uckGrade}-309\right|,310 \le L_{uckGrade}<311:0.845+0\left|L_{uckGrade}-310\right|,311 \le L_{uckGrade}<312:0.845+-0.001\left|L_{uckGrade}-311\right|,312 \le L_{uckGrade}<313:0.844+0\left|L_{uckGrade}-312\right|,313 \le L_{uckGrade}<314:0.844+-0.001\left|L_{uckGrade}-313\right|,314 \le L_{uckGrade}<315:0.843+0\left|L_{uckGrade}-314\right|,315 \le L_{uckGrade}<316:0.843+-0.001\left|L_{uckGrade}-315\right|,316 \le L_{uckGrade}<317:0.842+0\left|L_{uckGrade}-316\right|,317 \le L_{uckGrade}<318:0.842+-0.001\left|L_{uckGrade}-317\right|,318 \le L_{uckGrade}<319:0.841+0\left|L_{uckGrade}-318\right|,319 \le L_{uckGrade}<320:0.841+-0.001\left|L_{uckGrade}-319\right|,320 \le L_{uckGrade}<321:0.84+0\left|L_{uckGrade}-320\right|,321 \le L_{uckGrade}<322:0.84+-0.001\left|L_{uckGrade}-321\right|,322 \le L_{uckGrade}<323:0.839+0\left|L_{uckGrade}-322\right|,323 \le L_{uckGrade}<324:0.839+-0.001\left|L_{uckGrade}-323\right|,324 \le L_{uckGrade}<325:0.838+0\left|L_{uckGrade}-324\right|,325 \le L_{uckGrade}<326:0.838+-0.001\left|L_{uckGrade}-325\right|,326 \le L_{uckGrade}<327:0.837+0\left|L_{uckGrade}-326\right|,327 \le L_{uckGrade}<328:0.837+-0.001\left|L_{uckGrade}-327\right|,328 \le L_{uckGrade}<329:0.836+0\left|L_{uckGrade}-328\right|,329 \le L_{uckGrade}<330:0.836+-0.001\left|L_{uckGrade}-329\right|,330 \le L_{uckGrade}<331:0.835+0\left|L_{uckGrade}-330\right|,331 \le L_{uckGrade}<332:0.835+-0.001\left|L_{uckGrade}-331\right|,332 \le L_{uckGrade}<333:0.834+0\left|L_{uckGrade}-332\right|,333 \le L_{uckGrade}<334:0.834+-0.001\left|L_{uckGrade}-333\right|,334 \le L_{uckGrade}<335:0.833+0\left|L_{uckGrade}-334\right|,335 \le L_{uckGrade}<336:0.833+-0.001\left|L_{uckGrade}-335\right|,336 \le L_{uckGrade}<337:0.832+0\left|L_{uckGrade}-336\right|,337 \le L_{uckGrade}<338:0.832+-0.001\left|L_{uckGrade}-337\right|,338 \le L_{uckGrade}<339:0.831+0\left|L_{uckGrade}-338\right|,339 \le L_{uckGrade}<340:0.831+-0.001\left|L_{uckGrade}-339\right|,340 \le L_{uckGrade}<341:0.83+0\left|L_{uckGrade}-340\right|,341 \le L_{uckGrade}<342:0.83+-0.001\left|L_{uckGrade}-341\right|,342 \le L_{uckGrade}<343:0.829+0\left|L_{uckGrade}-342\right|,343 \le L_{uckGrade}<344:0.829+-0.001\left|L_{uckGrade}-343\right|,344 \le L_{uckGrade}<345:0.828+0\left|L_{uckGrade}-344\right|,345 \le L_{uckGrade}<346:0.828+-0.001\left|L_{uckGrade}-345\right|,346 \le L_{uckGrade}<347:0.827+0\left|L_{uckGrade}-346\right|,347 \le L_{uckGrade}<348:0.827+-0.001\left|L_{uckGrade}-347\right|,348 \le L_{uckGrade}<349:0.826+0\left|L_{uckGrade}-348\right|,349 \le L_{uckGrade}<350:0.826+-0.001\left|L_{uckGrade}-349\right|,350 \le L_{uckGrade}<351:0.825+0\left|L_{uckGrade}-350\right|,351 \le L_{uckGrade}<352:0.825+-0.001\left|L_{uckGrade}-351\right|,352 \le L_{uckGrade}<353:0.824+0\left|L_{uckGrade}-352\right|,353 \le L_{uckGrade}<354:0.824+-0.001\left|L_{uckGrade}-353\right|,354 \le L_{uckGrade}<355:0.823+0\left|L_{uckGrade}-354\right|,355 \le L_{uckGrade}<356:0.823+-0.001\left|L_{uckGrade}-355\right|,356 \le L_{uckGrade}<357:0.822+0\left|L_{uckGrade}-356\right|,357 \le L_{uckGrade}<358:0.822+-0.001\left|L_{uckGrade}-357\right|,358 \le L_{uckGrade}<359:0.821+0\left|L_{uckGrade}-358\right|,359 \le L_{uckGrade}<360:0.821+-0.001\left|L_{uckGrade}-359\right|,360 \le L_{uckGrade}<361:0.82+0\left|L_{uckGrade}-360\right|,361 \le L_{uckGrade}<362:0.82+-0.001\left|L_{uckGrade}-361\right|,362 \le L_{uckGrade}<363:0.819+0\left|L_{uckGrade}-362\right|,363 \le L_{uckGrade}<364:0.819+-0.001\left|L_{uckGrade}-363\right|,364 \le L_{uckGrade}<365:0.818+0\left|L_{uckGrade}-364\right|,365 \le L_{uckGrade}<366:0.818+-0.001\left|L_{uckGrade}-365\right|,366 \le L_{uckGrade}<367:0.817+0\left|L_{uckGrade}-366\right|,367 \le L_{uckGrade}<368:0.817+-0.001\left|L_{uckGrade}-367\right|,368 \le L_{uckGrade}<369:0.816+0\left|L_{uckGrade}-368\right|,369 \le L_{uckGrade}<370:0.816+-0.001\left|L_{uckGrade}-369\right|,370 \le L_{uckGrade}<371:0.815+0\left|L_{uckGrade}-370\right|,371 \le L_{uckGrade}<372:0.815+-0.001\left|L_{uckGrade}-371\right|,372 \le L_{uckGrade}<373:0.814+0\left|L_{uckGrade}-372\right|,373 \le L_{uckGrade}<374:0.814+-0.001\left|L_{uckGrade}-373\right|,374 \le L_{uckGrade}<375:0.813+0\left|L_{uckGrade}-374\right|,375 \le L_{uckGrade}<376:0.813+-0.001\left|L_{uckGrade}-375\right|,376 \le L_{uckGrade}<377:0.812+0\left|L_{uckGrade}-376\right|,377 \le L_{uckGrade}<378:0.812+-0.001\left|L_{uckGrade}-377\right|,378 \le L_{uckGrade}<379:0.811+0\left|L_{uckGrade}-378\right|,379 \le L_{uckGrade}<380:0.811+-0.001\left|L_{uckGrade}-379\right|,380 \le L_{uckGrade}<381:0.81+0\left|L_{uckGrade}-380\right|,381 \le L_{uckGrade}<382:0.81+-0.001\left|L_{uckGrade}-381\right|,382 \le L_{uckGrade}<383:0.809+0\left|L_{uckGrade}-382\right|,383 \le L_{uckGrade}<384:0.809+-0.001\left|L_{uckGrade}-383\right|,384 \le L_{uckGrade}<385:0.808+0\left|L_{uckGrade}-384\right|,385 \le L_{uckGrade}<386:0.808+-0.001\left|L_{uckGrade}-385\right|,386 \le L_{uckGrade}<387:0.807+0\left|L_{uckGrade}-386\right|,387 \le L_{uckGrade}<388:0.807+-0.001\left|L_{uckGrade}-387\right|,388 \le L_{uckGrade}<389:0.806+0\left|L_{uckGrade}-388\right|,389 \le L_{uckGrade}<390:0.806+-0.001\left|L_{uckGrade}-389\right|,390 \le L_{uckGrade}<391:0.805+0\left|L_{uckGrade}-390\right|,391 \le L_{uckGrade}<392:0.805+-0.001\left|L_{uckGrade}-391\right|,392 \le L_{uckGrade}<393:0.804+0\left|L_{uckGrade}-392\right|,393 \le L_{uckGrade}<394:0.804+-0.001\left|L_{uckGrade}-393\right|,394 \le L_{uckGrade}<395:0.803+0\left|L_{uckGrade}-394\right|,395 \le L_{uckGrade}<396:0.803+-0.001\left|L_{uckGrade}-395\right|,396 \le L_{uckGrade}<397:0.802+0\left|L_{uckGrade}-396\right|,397 \le L_{uckGrade}<398:0.802+-0.001\left|L_{uckGrade}-397\right|,398 \le L_{uckGrade}<399:0.801+0\left|L_{uckGrade}-398\right|,399 \le L_{uckGrade}<400:0.801+-0.001\left|L_{uckGrade}-399\right|,400 \le L_{uckGrade}<401:0.8+0\left|L_{uckGrade}-400\right|,401 \le L_{uckGrade}<402:0.8+-0.001\left|L_{uckGrade}-401\right|,402 \le L_{uckGrade}<403:0.799+0\left|L_{uckGrade}-402\right|,403 \le L_{uckGrade}<404:0.799+-0.001\left|L_{uckGrade}-403\right|,404 \le L_{uckGrade}<405:0.798+0\left|L_{uckGrade}-404\right|,405 \le L_{uckGrade}<406:0.798+-0.001\left|L_{uckGrade}-405\right|,406 \le L_{uckGrade}<407:0.797+0\left|L_{uckGrade}-406\right|,407 \le L_{uckGrade}<408:0.797+-0.001\left|L_{uckGrade}-407\right|,408 \le L_{uckGrade}<409:0.796+0\left|L_{uckGrade}-408\right|,409 \le L_{uckGrade}<410:0.796+-0.001\left|L_{uckGrade}-409\right|,410 \le L_{uckGrade}<411:0.795+0\left|L_{uckGrade}-410\right|,411 \le L_{uckGrade}<412:0.795+-0.001\left|L_{uckGrade}-411\right|,412 \le L_{uckGrade}<413:0.794+0\left|L_{uckGrade}-412\right|,413 \le L_{uckGrade}<414:0.794+-0.001\left|L_{uckGrade}-413\right|,414 \le L_{uckGrade}<415:0.793+0\left|L_{uckGrade}-414\right|,415 \le L_{uckGrade}<416:0.793+-0.001\left|L_{uckGrade}-415\right|,416 \le L_{uckGrade}<417:0.792+0\left|L_{uckGrade}-416\right|,417 \le L_{uckGrade}<418:0.792+-0.001\left|L_{uckGrade}-417\right|,418 \le L_{uckGrade}<419:0.791+0\left|L_{uckGrade}-418\right|,419 \le L_{uckGrade}<420:0.791+-0.001\left|L_{uckGrade}-419\right|,420 \le L_{uckGrade}<421:0.79+0\left|L_{uckGrade}-420\right|,421 \le L_{uckGrade}<422:0.79+-0.001\left|L_{uckGrade}-421\right|,422 \le L_{uckGrade}<423:0.789+0\left|L_{uckGrade}-422\right|,423 \le L_{uckGrade}<424:0.789+-0.001\left|L_{uckGrade}-423\right|,424 \le L_{uckGrade}<425:0.788+0\left|L_{uckGrade}-424\right|,425 \le L_{uckGrade}<426:0.788+-0.001\left|L_{uckGrade}-425\right|,426 \le L_{uckGrade}<427:0.787+0\left|L_{uckGrade}-426\right|,427 \le L_{uckGrade}<428:0.787+-0.001\left|L_{uckGrade}-427\right|,428 \le L_{uckGrade}<429:0.786+0\left|L_{uckGrade}-428\right|,429 \le L_{uckGrade}<430:0.786+-0.001\left|L_{uckGrade}-429\right|,430 \le L_{uckGrade}<431:0.785+0\left|L_{uckGrade}-430\right|,431 \le L_{uckGrade}<432:0.785+-0.001\left|L_{uckGrade}-431\right|,432 \le L_{uckGrade}<433:0.784+0\left|L_{uckGrade}-432\right|,433 \le L_{uckGrade}<434:0.784+-0.001\left|L_{uckGrade}-433\right|,434 \le L_{uckGrade}<435:0.783+0\left|L_{uckGrade}-434\right|,435 \le L_{uckGrade}<436:0.783+-0.001\left|L_{uckGrade}-435\right|,436 \le L_{uckGrade}<437:0.782+0\left|L_{uckGrade}-436\right|,437 \le L_{uckGrade}<438:0.782+-0.001\left|L_{uckGrade}-437\right|,438 \le L_{uckGrade}<439:0.781+0\left|L_{uckGrade}-438\right|,439 \le L_{uckGrade}<440:0.781+-0.001\left|L_{uckGrade}-439\right|,440 \le L_{uckGrade}<441:0.78+0\left|L_{uckGrade}-440\right|,441 \le L_{uckGrade}<442:0.78+-0.001\left|L_{uckGrade}-441\right|,442 \le L_{uckGrade}<443:0.779+0\left|L_{uckGrade}-442\right|,443 \le L_{uckGrade}<444:0.779+-0.001\left|L_{uckGrade}-443\right|,444 \le L_{uckGrade}<445:0.778+0\left|L_{uckGrade}-444\right|,445 \le L_{uckGrade}<446:0.778+-0.001\left|L_{uckGrade}-445\right|,446 \le L_{uckGrade}<447:0.777+0\left|L_{uckGrade}-446\right|,447 \le L_{uckGrade}<448:0.777+-0.001\left|L_{uckGrade}-447\right|,448 \le L_{uckGrade}<449:0.776+0\left|L_{uckGrade}-448\right|,449 \le L_{uckGrade}<450:0.776+-0.001\left|L_{uckGrade}-449\right|,450 \le L_{uckGrade}<451:0.775+0\left|L_{uckGrade}-450\right|,451 \le L_{uckGrade}<452:0.775+-0.001\left|L_{uckGrade}-451\right|,452 \le L_{uckGrade}<453:0.774+0\left|L_{uckGrade}-452\right|,453 \le L_{uckGrade}<454:0.774+-0.001\left|L_{uckGrade}-453\right|,454 \le L_{uckGrade}<455:0.773+0\left|L_{uckGrade}-454\right|,455 \le L_{uckGrade}<456:0.773+-0.001\left|L_{uckGrade}-455\right|,456 \le L_{uckGrade}<457:0.772+0\left|L_{uckGrade}-456\right|,457 \le L_{uckGrade}<458:0.772+-0.001\left|L_{uckGrade}-457\right|,458 \le L_{uckGrade}<459:0.771+0\left|L_{uckGrade}-458\right|,459 \le L_{uckGrade}<460:0.771+-0.001\left|L_{uckGrade}-459\right|,460 \le L_{uckGrade}<461:0.77+0\left|L_{uckGrade}-460\right|,461 \le L_{uckGrade}<462:0.77+-0.001\left|L_{uckGrade}-461\right|,462 \le L_{uckGrade}<463:0.769+0\left|L_{uckGrade}-462\right|,463 \le L_{uckGrade}<464:0.769+-0.001\left|L_{uckGrade}-463\right|,464 \le L_{uckGrade}<465:0.768+0\left|L_{uckGrade}-464\right|,465 \le L_{uckGrade}<466:0.768+-0.001\left|L_{uckGrade}-465\right|,466 \le L_{uckGrade}<467:0.767+0\left|L_{uckGrade}-466\right|,467 \le L_{uckGrade}<468:0.767+-0.001\left|L_{uckGrade}-467\right|,468 \le L_{uckGrade}<469:0.766+0\left|L_{uckGrade}-468\right|,469 \le L_{uckGrade}<470:0.766+-0.001\left|L_{uckGrade}-469\right|,470 \le L_{uckGrade}<471:0.765+0\left|L_{uckGrade}-470\right|,471 \le L_{uckGrade}<472:0.765+-0.001\left|L_{uckGrade}-471\right|,472 \le L_{uckGrade}<473:0.764+0\left|L_{uckGrade}-472\right|,473 \le L_{uckGrade}<474:0.764+-0.001\left|L_{uckGrade}-473\right|,474 \le L_{uckGrade}<475:0.763+0\left|L_{uckGrade}-474\right|,475 \le L_{uckGrade}<476:0.763+-0.001\left|L_{uckGrade}-475\right|,476 \le L_{uckGrade}<477:0.762+0\left|L_{uckGrade}-476\right|,477 \le L_{uckGrade}<478:0.762+-0.001\left|L_{uckGrade}-477\right|,478 \le L_{uckGrade}<479:0.761+0\left|L_{uckGrade}-478\right|,479 \le L_{uckGrade}<480:0.761+-0.001\left|L_{uckGrade}-479\right|,480 \le L_{uckGrade}<481:0.76+0\left|L_{uckGrade}-480\right|,481 \le L_{uckGrade}<482:0.76+-0.001\left|L_{uckGrade}-481\right|,482 \le L_{uckGrade}<483:0.759+0\left|L_{uckGrade}-482\right|,483 \le L_{uckGrade}<484:0.759+-0.001\left|L_{uckGrade}-483\right|,484 \le L_{uckGrade}<485:0.758+0\left|L_{uckGrade}-484\right|,485 \le L_{uckGrade}<486:0.758+-0.001\left|L_{uckGrade}-485\right|,486 \le L_{uckGrade}<487:0.757+0\left|L_{uckGrade}-486\right|,487 \le L_{uckGrade}<488:0.757+-0.001\left|L_{uckGrade}-487\right|,488 \le L_{uckGrade}<489:0.756+0\left|L_{uckGrade}-488\right|,489 \le L_{uckGrade}<490:0.756+-0.001\left|L_{uckGrade}-489\right|,490 \le L_{uckGrade}<491:0.755+0\left|L_{uckGrade}-490\right|,491 \le L_{uckGrade}<492:0.755+-0.001\left|L_{uckGrade}-491\right|,492 \le L_{uckGrade}<493:0.754+0\left|L_{uckGrade}-492\right|,493 \le L_{uckGrade}<494:0.754+-0.001\left|L_{uckGrade}-493\right|,494 \le L_{uckGrade}<495:0.753+0\left|L_{uckGrade}-494\right|,495 \le L_{uckGrade}<496:0.753+-0.001\left|L_{uckGrade}-495\right|,496 \le L_{uckGrade}<497:0.752+0\left|L_{uckGrade}-496\right|,497 \le L_{uckGrade}<498:0.752+-0.001\left|L_{uckGrade}-497\right|,498 \le L_{uckGrade}<499:0.751+0\left|L_{uckGrade}-498\right|,499 \le L_{uckGrade}<500:0.751+-0.001\left|L_{uckGrade}-499\right|\right\}</pre> | |||
|luckgrade03=<pre>L_{uckGrade03}(L_{uckGrade})=\left\{0 \le L_{uckGrade}<500:1+0\left|L_{uckGrade}-0\right|\right\}</pre> | |||
|luckgrade04=<pre>L_{uckGrade04}(L_{uckGrade})=\left\{0 \le L_{uckGrade}<7:1+0.01\left|L_{uckGrade}-0\right|,7 \le L_{uckGrade}<8:1.07+0.009\left|L_{uckGrade}-7\right|,8 \le L_{uckGrade}<12:1.079+0.01\left|L_{uckGrade}-8\right|,12 \le L_{uckGrade}<13:1.119+0.009\left|L_{uckGrade}-12\right|,13 \le L_{uckGrade}<16:1.128+0.01\left|L_{uckGrade}-13\right|,16 \le L_{uckGrade}<17:1.158+0.009\left|L_{uckGrade}-16\right|,17 \le L_{uckGrade}<19:1.167+0.01\left|L_{uckGrade}-17\right|,19 \le L_{uckGrade}<20:1.187+0.009\left|L_{uckGrade}-19\right|,20 \le L_{uckGrade}<21:1.196+0.01\left|L_{uckGrade}-20\right|,21 \le L_{uckGrade}<22:1.206+0.009\left|L_{uckGrade}-21\right|,22 \le L_{uckGrade}<23:1.215+0.01\left|L_{uckGrade}-22\right|,23 \le L_{uckGrade}<24:1.225+0.009\left|L_{uckGrade}-23\right|,24 \le L_{uckGrade}<26:1.234+0.01\left|L_{uckGrade}-24\right|,26 \le L_{uckGrade}<28:1.254+0.009\left|L_{uckGrade}-26\right|,28 \le L_{uckGrade}<29:1.272+0.01\left|L_{uckGrade}-28\right|,29 \le L_{uckGrade}<30:1.282+0.009\left|L_{uckGrade}-29\right|,30 \le L_{uckGrade}<31:1.291+0.01\left|L_{uckGrade}-30\right|,31 \le L_{uckGrade}<33:1.301+0.009\left|L_{uckGrade}-31\right|,33 \le L_{uckGrade}<34:1.319+0.01\left|L_{uckGrade}-33\right|,34 \le L_{uckGrade}<36:1.329+0.009\left|L_{uckGrade}-34\right|,36 \le L_{uckGrade}<37:1.347+0.01\left|L_{uckGrade}-36\right|,37 \le L_{uckGrade}<40:1.357+0.009\left|L_{uckGrade}-37\right|,40 \le L_{uckGrade}<41:1.384+0.01\left|L_{uckGrade}-40\right|,41 \le L_{uckGrade}<49:1.394+0.009\left|L_{uckGrade}-41\right|,49 \le L_{uckGrade}<50:1.466+0.01\left|L_{uckGrade}-49\right|,50 \le L_{uckGrade}<51:1.476+0.009\left|L_{uckGrade}-50\right|,51 \le L_{uckGrade}<52:1.485+0.008\left|L_{uckGrade}-51\right|,52 \le L_{uckGrade}<60:1.493+0.009\left|L_{uckGrade}-52\right|,60 \le L_{uckGrade}<61:1.565+0.008\left|L_{uckGrade}-60\right|,61 \le L_{uckGrade}<64:1.573+0.009\left|L_{uckGrade}-61\right|,64 \le L_{uckGrade}<65:1.6+0.008\left|L_{uckGrade}-64\right|,65 \le L_{uckGrade}<67:1.608+0.009\left|L_{uckGrade}-65\right|,67 \le L_{uckGrade}<68:1.626+0.008\left|L_{uckGrade}-67\right|,68 \le L_{uckGrade}<70:1.634+0.009\left|L_{uckGrade}-68\right|,70 \le L_{uckGrade}<71:1.652+0.008\left|L_{uckGrade}-70\right|,71 \le L_{uckGrade}<72:1.66+0.009\left|L_{uckGrade}-71\right|,72 \le L_{uckGrade}<73:1.669+0.008\left|L_{uckGrade}-72\right|,73 \le L_{uckGrade}<75:1.677+0.009\left|L_{uckGrade}-73\right|,75 \le L_{uckGrade}<77:1.695+0.008\left|L_{uckGrade}-75\right|,77 \le L_{uckGrade}<78:1.711+0.009\left|L_{uckGrade}-77\right|,78 \le L_{uckGrade}<79:1.72+0.008\left|L_{uckGrade}-78\right|,79 \le L_{uckGrade}<80:1.728+0.009\left|L_{uckGrade}-79\right|,80 \le L_{uckGrade}<81:1.737+0.008\left|L_{uckGrade}-80\right|,81 \le L_{uckGrade}<82:1.745+0.009\left|L_{uckGrade}-81\right|,82 \le L_{uckGrade}<84:1.754+0.008\left|L_{uckGrade}-82\right|,84 \le L_{uckGrade}<85:1.77+0.009\left|L_{uckGrade}-84\right|,85 \le L_{uckGrade}<88:1.779+0.008\left|L_{uckGrade}-85\right|,88 \le L_{uckGrade}<89:1.803+0.009\left|L_{uckGrade}-88\right|,89 \le L_{uckGrade}<93:1.812+0.008\left|L_{uckGrade}-89\right|,93 \le L_{uckGrade}<94:1.844+0.009\left|L_{uckGrade}-93\right|,94 \le L_{uckGrade}<107:1.853+0.008\left|L_{uckGrade}-94\right|,107 \le L_{uckGrade}<108:1.957+0.007\left|L_{uckGrade}-107\right|,108 \le L_{uckGrade}<112:1.964+0.008\left|L_{uckGrade}-108\right|,112 \le L_{uckGrade}<113:1.996+0.007\left|L_{uckGrade}-112\right|,113 \le L_{uckGrade}<116:2.003+0.008\left|L_{uckGrade}-113\right|,116 \le L_{uckGrade}<117:2.027+0.007\left|L_{uckGrade}-116\right|,117 \le L_{uckGrade}<119:2.034+0.008\left|L_{uckGrade}-117\right|,119 \le L_{uckGrade}<120:2.05+0.007\left|L_{uckGrade}-119\right|,120 \le L_{uckGrade}<121:2.057+0.008\left|L_{uckGrade}-120\right|,121 \le L_{uckGrade}<122:2.065+0.007\left|L_{uckGrade}-121\right|,122 \le L_{uckGrade}<123:2.072+0.008\left|L_{uckGrade}-122\right|,123 \le L_{uckGrade}<124:2.08+0.007\left|L_{uckGrade}-123\right|,124 \le L_{uckGrade}<126:2.087+0.008\left|L_{uckGrade}-124\right|,126 \le L_{uckGrade}<128:2.103+0.007\left|L_{uckGrade}-126\right|,128 \le L_{uckGrade}<129:2.117+0.008\left|L_{uckGrade}-128\right|,129 \le L_{uckGrade}<130:2.125+0.007\left|L_{uckGrade}-129\right|,130 \le L_{uckGrade}<131:2.132+0.008\left|L_{uckGrade}-130\right|,131 \le L_{uckGrade}<133:2.14+0.007\left|L_{uckGrade}-131\right|,133 \le L_{uckGrade}<134:2.154+0.008\left|L_{uckGrade}-133\right|,134 \le L_{uckGrade}<136:2.162+0.007\left|L_{uckGrade}-134\right|,136 \le L_{uckGrade}<137:2.176+0.008\left|L_{uckGrade}-136\right|,137 \le L_{uckGrade}<140:2.184+0.007\left|L_{uckGrade}-137\right|,140 \le L_{uckGrade}<141:2.205+0.008\left|L_{uckGrade}-140\right|,141 \le L_{uckGrade}<149:2.213+0.007\left|L_{uckGrade}-141\right|,149 \le L_{uckGrade}<150:2.269+0.008\left|L_{uckGrade}-149\right|,150 \le L_{uckGrade}<151:2.277+0.007\left|L_{uckGrade}-150\right|,151 \le L_{uckGrade}<152:2.284+0.006\left|L_{uckGrade}-151\right|,152 \le L_{uckGrade}<160:2.29+0.007\left|L_{uckGrade}-152\right|,160 \le L_{uckGrade}<161:2.346+0.006\left|L_{uckGrade}-160\right|,161 \le L_{uckGrade}<164:2.352+0.007\left|L_{uckGrade}-161\right|,164 \le L_{uckGrade}<165:2.373+0.006\left|L_{uckGrade}-164\right|,165 \le L_{uckGrade}<167:2.379+0.007\left|L_{uckGrade}-165\right|,167 \le L_{uckGrade}<168:2.393+0.006\left|L_{uckGrade}-167\right|,168 \le L_{uckGrade}<170:2.399+0.007\left|L_{uckGrade}-168\right|,170 \le L_{uckGrade}<171:2.413+0.006\left|L_{uckGrade}-170\right|,171 \le L_{uckGrade}<172:2.419+0.007\left|L_{uckGrade}-171\right|,172 \le L_{uckGrade}<173:2.426+0.006\left|L_{uckGrade}-172\right|,173 \le L_{uckGrade}<175:2.432+0.007\left|L_{uckGrade}-173\right|,175 \le L_{uckGrade}<177:2.446+0.006\left|L_{uckGrade}-175\right|,177 \le L_{uckGrade}<178:2.458+0.007\left|L_{uckGrade}-177\right|,178 \le L_{uckGrade}<179:2.465+0.006\left|L_{uckGrade}-178\right|,179 \le L_{uckGrade}<180:2.471+0.007\left|L_{uckGrade}-179\right|,180 \le L_{uckGrade}<181:2.478+0.006\left|L_{uckGrade}-180\right|,181 \le L_{uckGrade}<182:2.484+0.007\left|L_{uckGrade}-181\right|,182 \le L_{uckGrade}<184:2.491+0.006\left|L_{uckGrade}-182\right|,184 \le L_{uckGrade}<185:2.503+0.007\left|L_{uckGrade}-184\right|,185 \le L_{uckGrade}<188:2.51+0.006\left|L_{uckGrade}-185\right|,188 \le L_{uckGrade}<189:2.528+0.007\left|L_{uckGrade}-188\right|,189 \le L_{uckGrade}<193:2.535+0.006\left|L_{uckGrade}-189\right|,193 \le L_{uckGrade}<194:2.559+0.007\left|L_{uckGrade}-193\right|,194 \le L_{uckGrade}<207:2.566+0.006\left|L_{uckGrade}-194\right|,207 \le L_{uckGrade}<208:2.644+0.005\left|L_{uckGrade}-207\right|,208 \le L_{uckGrade}<212:2.649+0.006\left|L_{uckGrade}-208\right|,212 \le L_{uckGrade}<213:2.673+0.005\left|L_{uckGrade}-212\right|,213 \le L_{uckGrade}<216:2.678+0.006\left|L_{uckGrade}-213\right|,216 \le L_{uckGrade}<217:2.696+0.005\left|L_{uckGrade}-216\right|,217 \le L_{uckGrade}<219:2.701+0.006\left|L_{uckGrade}-217\right|,219 \le L_{uckGrade}<220:2.713+0.005\left|L_{uckGrade}-219\right|,220 \le L_{uckGrade}<221:2.718+0.006\left|L_{uckGrade}-220\right|,221 \le L_{uckGrade}<222:2.724+0.005\left|L_{uckGrade}-221\right|,222 \le L_{uckGrade}<223:2.729+0.006\left|L_{uckGrade}-222\right|,223 \le L_{uckGrade}<224:2.735+0.005\left|L_{uckGrade}-223\right|,224 \le L_{uckGrade}<226:2.74+0.006\left|L_{uckGrade}-224\right|,226 \le L_{uckGrade}<228:2.752+0.005\left|L_{uckGrade}-226\right|,228 \le L_{uckGrade}<229:2.762+0.006\left|L_{uckGrade}-228\right|,229 \le L_{uckGrade}<230:2.768+0.005\left|L_{uckGrade}-229\right|,230 \le L_{uckGrade}<231:2.773+0.006\left|L_{uckGrade}-230\right|,231 \le L_{uckGrade}<233:2.779+0.005\left|L_{uckGrade}-231\right|,233 \le L_{uckGrade}<234:2.789+0.006\left|L_{uckGrade}-233\right|,234 \le L_{uckGrade}<236:2.795+0.005\left|L_{uckGrade}-234\right|,236 \le L_{uckGrade}<237:2.805+0.006\left|L_{uckGrade}-236\right|,237 \le L_{uckGrade}<240:2.811+0.005\left|L_{uckGrade}-237\right|,240 \le L_{uckGrade}<241:2.826+0.006\left|L_{uckGrade}-240\right|,241 \le L_{uckGrade}<249:2.832+0.005\left|L_{uckGrade}-241\right|,249 \le L_{uckGrade}<250:2.872+0.006\left|L_{uckGrade}-249\right|,250 \le L_{uckGrade}<251:2.878+0.005\left|L_{uckGrade}-250\right|,251 \le L_{uckGrade}<252:2.883+0.004\left|L_{uckGrade}-251\right|,252 \le L_{uckGrade}<260:2.887+0.005\left|L_{uckGrade}-252\right|,260 \le L_{uckGrade}<261:2.927+0.004\left|L_{uckGrade}-260\right|,261 \le L_{uckGrade}<264:2.931+0.005\left|L_{uckGrade}-261\right|,264 \le L_{uckGrade}<265:2.946+0.004\left|L_{uckGrade}-264\right|,265 \le L_{uckGrade}<267:2.95+0.005\left|L_{uckGrade}-265\right|,267 \le L_{uckGrade}<268:2.96+0.004\left|L_{uckGrade}-267\right|,268 \le L_{uckGrade}<270:2.964+0.005\left|L_{uckGrade}-268\right|,270 \le L_{uckGrade}<271:2.974+0.004\left|L_{uckGrade}-270\right|,271 \le L_{uckGrade}<272:2.978+0.005\left|L_{uckGrade}-271\right|,272 \le L_{uckGrade}<273:2.983+0.004\left|L_{uckGrade}-272\right|,273 \le L_{uckGrade}<275:2.987+0.005\left|L_{uckGrade}-273\right|,275 \le L_{uckGrade}<277:2.997+0.004\left|L_{uckGrade}-275\right|,277 \le L_{uckGrade}<278:3.005+0.005\left|L_{uckGrade}-277\right|,278 \le L_{uckGrade}<279:3.01+0.004\left|L_{uckGrade}-278\right|,279 \le L_{uckGrade}<280:3.014+0.005\left|L_{uckGrade}-279\right|,280 \le L_{uckGrade}<281:3.019+0.004\left|L_{uckGrade}-280\right|,281 \le L_{uckGrade}<282:3.023+0.005\left|L_{uckGrade}-281\right|,282 \le L_{uckGrade}<284:3.028+0.004\left|L_{uckGrade}-282\right|,284 \le L_{uckGrade}<285:3.036+0.005\left|L_{uckGrade}-284\right|,285 \le L_{uckGrade}<288:3.041+0.004\left|L_{uckGrade}-285\right|,288 \le L_{uckGrade}<289:3.053+0.005\left|L_{uckGrade}-288\right|,289 \le L_{uckGrade}<293:3.058+0.004\left|L_{uckGrade}-289\right|,293 \le L_{uckGrade}<294:3.074+0.005\left|L_{uckGrade}-293\right|,294 \le L_{uckGrade}<307:3.079+0.004\left|L_{uckGrade}-294\right|,307 \le L_{uckGrade}<308:3.131+0.003\left|L_{uckGrade}-307\right|,308 \le L_{uckGrade}<312:3.134+0.004\left|L_{uckGrade}-308\right|,312 \le L_{uckGrade}<313:3.15+0.003\left|L_{uckGrade}-312\right|,313 \le L_{uckGrade}<316:3.153+0.004\left|L_{uckGrade}-313\right|,316 \le L_{uckGrade}<317:3.165+0.003\left|L_{uckGrade}-316\right|,317 \le L_{uckGrade}<319:3.168+0.004\left|L_{uckGrade}-317\right|,319 \le L_{uckGrade}<320:3.176+0.003\left|L_{uckGrade}-319\right|,320 \le L_{uckGrade}<321:3.179+0.004\left|L_{uckGrade}-320\right|,321 \le L_{uckGrade}<322:3.183+0.003\left|L_{uckGrade}-321\right|,322 \le L_{uckGrade}<323:3.186+0.004\left|L_{uckGrade}-322\right|,323 \le L_{uckGrade}<324:3.19+0.003\left|L_{uckGrade}-323\right|,324 \le L_{uckGrade}<326:3.193+0.004\left|L_{uckGrade}-324\right|,326 \le L_{uckGrade}<328:3.201+0.003\left|L_{uckGrade}-326\right|,328 \le L_{uckGrade}<329:3.207+0.004\left|L_{uckGrade}-328\right|,329 \le L_{uckGrade}<330:3.211+0.003\left|L_{uckGrade}-329\right|,330 \le L_{uckGrade}<331:3.214+0.004\left|L_{uckGrade}-330\right|,331 \le L_{uckGrade}<333:3.218+0.003\left|L_{uckGrade}-331\right|,333 \le L_{uckGrade}<334:3.224+0.004\left|L_{uckGrade}-333\right|,334 \le L_{uckGrade}<336:3.228+0.003\left|L_{uckGrade}-334\right|,336 \le L_{uckGrade}<337:3.234+0.004\left|L_{uckGrade}-336\right|,337 \le L_{uckGrade}<340:3.238+0.003\left|L_{uckGrade}-337\right|,340 \le L_{uckGrade}<341:3.247+0.004\left|L_{uckGrade}-340\right|,341 \le L_{uckGrade}<349:3.251+0.003\left|L_{uckGrade}-341\right|,349 \le L_{uckGrade}<350:3.275+0.004\left|L_{uckGrade}-349\right|,350 \le L_{uckGrade}<351:3.279+0.003\left|L_{uckGrade}-350\right|,351 \le L_{uckGrade}<352:3.282+0.002\left|L_{uckGrade}-351\right|,352 \le L_{uckGrade}<360:3.284+0.003\left|L_{uckGrade}-352\right|,360 \le L_{uckGrade}<361:3.308+0.002\left|L_{uckGrade}-360\right|,361 \le L_{uckGrade}<364:3.31+0.003\left|L_{uckGrade}-361\right|,364 \le L_{uckGrade}<365:3.319+0.002\left|L_{uckGrade}-364\right|,365 \le L_{uckGrade}<367:3.321+0.003\left|L_{uckGrade}-365\right|,367 \le L_{uckGrade}<368:3.327+0.002\left|L_{uckGrade}-367\right|,368 \le L_{uckGrade}<370:3.329+0.003\left|L_{uckGrade}-368\right|,370 \le L_{uckGrade}<371:3.335+0.002\left|L_{uckGrade}-370\right|,371 \le L_{uckGrade}<372:3.337+0.003\left|L_{uckGrade}-371\right|,372 \le L_{uckGrade}<373:3.34+0.002\left|L_{uckGrade}-372\right|,373 \le L_{uckGrade}<375:3.342+0.003\left|L_{uckGrade}-373\right|,375 \le L_{uckGrade}<377:3.348+0.002\left|L_{uckGrade}-375\right|,377 \le L_{uckGrade}<378:3.352+0.003\left|L_{uckGrade}-377\right|,378 \le L_{uckGrade}<379:3.355+0.002\left|L_{uckGrade}-378\right|,379 \le L_{uckGrade}<380:3.357+0.003\left|L_{uckGrade}-379\right|,380 \le L_{uckGrade}<381:3.36+0.002\left|L_{uckGrade}-380\right|,381 \le L_{uckGrade}<382:3.362+0.003\left|L_{uckGrade}-381\right|,382 \le L_{uckGrade}<384:3.365+0.002\left|L_{uckGrade}-382\right|,384 \le L_{uckGrade}<385:3.369+0.003\left|L_{uckGrade}-384\right|,385 \le L_{uckGrade}<388:3.372+0.002\left|L_{uckGrade}-385\right|,388 \le L_{uckGrade}<389:3.378+0.003\left|L_{uckGrade}-388\right|,389 \le L_{uckGrade}<393:3.381+0.002\left|L_{uckGrade}-389\right|,393 \le L_{uckGrade}<394:3.389+0.003\left|L_{uckGrade}-393\right|,394 \le L_{uckGrade}<407:3.392+0.002\left|L_{uckGrade}-394\right|,407 \le L_{uckGrade}<408:3.418+0.001\left|L_{uckGrade}-407\right|,408 \le L_{uckGrade}<412:3.419+0.002\left|L_{uckGrade}-408\right|,412 \le L_{uckGrade}<413:3.427+0.001\left|L_{uckGrade}-412\right|,413 \le L_{uckGrade}<416:3.428+0.002\left|L_{uckGrade}-413\right|,416 \le L_{uckGrade}<417:3.434+0.001\left|L_{uckGrade}-416\right|,417 \le L_{uckGrade}<419:3.435+0.002\left|L_{uckGrade}-417\right|,419 \le L_{uckGrade}<420:3.439+0.001\left|L_{uckGrade}-419\right|,420 \le L_{uckGrade}<421:3.44+0.002\left|L_{uckGrade}-420\right|,421 \le L_{uckGrade}<422:3.442+0.001\left|L_{uckGrade}-421\right|,422 \le L_{uckGrade}<423:3.443+0.002\left|L_{uckGrade}-422\right|,423 \le L_{uckGrade}<424:3.445+0.001\left|L_{uckGrade}-423\right|,424 \le L_{uckGrade}<426:3.446+0.002\left|L_{uckGrade}-424\right|,426 \le L_{uckGrade}<428:3.45+0.001\left|L_{uckGrade}-426\right|,428 \le L_{uckGrade}<429:3.452+0.002\left|L_{uckGrade}-428\right|,429 \le L_{uckGrade}<430:3.454+0.001\left|L_{uckGrade}-429\right|,430 \le L_{uckGrade}<431:3.455+0.002\left|L_{uckGrade}-430\right|,431 \le L_{uckGrade}<433:3.457+0.001\left|L_{uckGrade}-431\right|,433 \le L_{uckGrade}<434:3.459+0.002\left|L_{uckGrade}-433\right|,434 \le L_{uckGrade}<436:3.461+0.001\left|L_{uckGrade}-434\right|,436 \le L_{uckGrade}<437:3.463+0.002\left|L_{uckGrade}-436\right|,437 \le L_{uckGrade}<440:3.465+0.001\left|L_{uckGrade}-437\right|,440 \le L_{uckGrade}<441:3.468+0.002\left|L_{uckGrade}-440\right|,441 \le L_{uckGrade}<449:3.47+0.001\left|L_{uckGrade}-441\right|,449 \le L_{uckGrade}<450:3.478+0.002\left|L_{uckGrade}-449\right|,450 \le L_{uckGrade}<451:3.48+0.001\left|L_{uckGrade}-450\right|,451 \le L_{uckGrade}<452:3.481+0\left|L_{uckGrade}-451\right|,452 \le L_{uckGrade}<460:3.481+0.001\left|L_{uckGrade}-452\right|,460 \le L_{uckGrade}<461:3.489+0\left|L_{uckGrade}-460\right|,461 \le L_{uckGrade}<464:3.489+0.001\left|L_{uckGrade}-461\right|,464 \le L_{uckGrade}<465:3.492+0\left|L_{uckGrade}-464\right|,465 \le L_{uckGrade}<467:3.492+0.001\left|L_{uckGrade}-465\right|,467 \le L_{uckGrade}<468:3.494+0\left|L_{uckGrade}-467\right|,468 \le L_{uckGrade}<470:3.494+0.001\left|L_{uckGrade}-468\right|,470 \le L_{uckGrade}<471:3.496+0\left|L_{uckGrade}-470\right|,471 \le L_{uckGrade}<472:3.496+0.001\left|L_{uckGrade}-471\right|,472 \le L_{uckGrade}<473:3.497+0\left|L_{uckGrade}-472\right|,473 \le L_{uckGrade}<475:3.497+0.001\left|L_{uckGrade}-473\right|,475 \le L_{uckGrade}<477:3.499+0\left|L_{uckGrade}-475\right|,477 \le L_{uckGrade}<478:3.499+0.001\left|L_{uckGrade}-477\right|,478 \le L_{uckGrade}<479:3.5+0\left|L_{uckGrade}-478\right|,479 \le L_{uckGrade}<480:3.5+0.001\left|L_{uckGrade}-479\right|,480 \le L_{uckGrade}<481:3.501+0\left|L_{uckGrade}-480\right|,481 \le L_{uckGrade}<482:3.501+0.001\left|L_{uckGrade}-481\right|,482 \le L_{uckGrade}<484:3.502+0\left|L_{uckGrade}-482\right|,484 \le L_{uckGrade}<485:3.502+0.001\left|L_{uckGrade}-484\right|,485 \le L_{uckGrade}<488:3.503+0\left|L_{uckGrade}-485\right|,488 \le L_{uckGrade}<489:3.503+0.001\left|L_{uckGrade}-488\right|,489 \le L_{uckGrade}<493:3.504+0\left|L_{uckGrade}-489\right|,493 \le L_{uckGrade}<494:3.504+0.001\left|L_{uckGrade}-493\right|,494 \le L_{uckGrade}<500:3.505+0\left|L_{uckGrade}-494\right|\right\}</pre> | |||
|luckgrade05=<pre>L_{uckGrade05}(L_{uckGrade})=\left\{0 \le L_{uckGrade}<1:1+0.012\left|L_{uckGrade}-0\right|,1 \le L_{uckGrade}<3:1.012+0.011\left|L_{uckGrade}-1\right|,3 \le L_{uckGrade}<4:1.034+0.012\left|L_{uckGrade}-3\right|,4 \le L_{uckGrade}<5:1.046+0.011\left|L_{uckGrade}-4\right|,5 \le L_{uckGrade}<6:1.057+0.012\left|L_{uckGrade}-5\right|,6 \le L_{uckGrade}<8:1.069+0.011\left|L_{uckGrade}-6\right|,8 \le L_{uckGrade}<9:1.091+0.012\left|L_{uckGrade}-8\right|,9 \le L_{uckGrade}<12:1.103+0.011\left|L_{uckGrade}-9\right|,12 \le L_{uckGrade}<13:1.136+0.012\left|L_{uckGrade}-12\right|,13 \le L_{uckGrade}<18:1.148+0.011\left|L_{uckGrade}-13\right|,18 \le L_{uckGrade}<19:1.203+0.012\left|L_{uckGrade}-18\right|,19 \le L_{uckGrade}<26:1.215+0.011\left|L_{uckGrade}-19\right|,26 \le L_{uckGrade}<27:1.292+0.01\left|L_{uckGrade}-26\right|,27 \le L_{uckGrade}<32:1.302+0.011\left|L_{uckGrade}-27\right|,32 \le L_{uckGrade}<33:1.357+0.01\left|L_{uckGrade}-32\right|,33 \le L_{uckGrade}<36:1.367+0.011\left|L_{uckGrade}-33\right|,36 \le L_{uckGrade}<37:1.4+0.01\left|L_{uckGrade}-36\right|,37 \le L_{uckGrade}<38:1.41+0.011\left|L_{uckGrade}-37\right|,38 \le L_{uckGrade}<39:1.421+0.01\left|L_{uckGrade}-38\right|,39 \le L_{uckGrade}<41:1.431+0.011\left|L_{uckGrade}-39\right|,41 \le L_{uckGrade}<42:1.453+0.01\left|L_{uckGrade}-41\right|,42 \le L_{uckGrade}<43:1.463+0.011\left|L_{uckGrade}-42\right|,43 \le L_{uckGrade}<44:1.474+0.01\left|L_{uckGrade}-43\right|,44 \le L_{uckGrade}<45:1.484+0.011\left|L_{uckGrade}-44\right|,45 \le L_{uckGrade}<46:1.495+0.01\left|L_{uckGrade}-45\right|,46 \le L_{uckGrade}<47:1.505+0.011\left|L_{uckGrade}-46\right|,47 \le L_{uckGrade}<49:1.516+0.01\left|L_{uckGrade}-47\right|,49 \le L_{uckGrade}<50:1.536+0.011\left|L_{uckGrade}-49\right|,50 \le L_{uckGrade}<51:1.547+0.01\left|L_{uckGrade}-50\right|,51 \le L_{uckGrade}<52:1.557+0.011\left|L_{uckGrade}-51\right|,52 \le L_{uckGrade}<55:1.568+0.01\left|L_{uckGrade}-52\right|,55 \le L_{uckGrade}<56:1.598+0.011\left|L_{uckGrade}-55\right|,56 \le L_{uckGrade}<61:1.609+0.01\left|L_{uckGrade}-56\right|,61 \le L_{uckGrade}<62:1.659+0.011\left|L_{uckGrade}-61\right|,62 \le L_{uckGrade}<69:1.67+0.01\left|L_{uckGrade}-62\right|,69 \le L_{uckGrade}<70:1.74+0.009\left|L_{uckGrade}-69\right|,70 \le L_{uckGrade}<75:1.749+0.01\left|L_{uckGrade}-70\right|,75 \le L_{uckGrade}<76:1.799+0.009\left|L_{uckGrade}-75\right|,76 \le L_{uckGrade}<79:1.808+0.01\left|L_{uckGrade}-76\right|,79 \le L_{uckGrade}<80:1.838+0.009\left|L_{uckGrade}-79\right|,80 \le L_{uckGrade}<82:1.847+0.01\left|L_{uckGrade}-80\right|,82 \le L_{uckGrade}<83:1.867+0.009\left|L_{uckGrade}-82\right|,83 \le L_{uckGrade}<84:1.876+0.01\left|L_{uckGrade}-83\right|,84 \le L_{uckGrade}<85:1.886+0.009\left|L_{uckGrade}-84\right|,85 \le L_{uckGrade}<86:1.895+0.01\left|L_{uckGrade}-85\right|,86 \le L_{uckGrade}<87:1.905+0.009\left|L_{uckGrade}-86\right|,87 \le L_{uckGrade}<88:1.914+0.01\left|L_{uckGrade}-87\right|,88 \le L_{uckGrade}<89:1.924+0.009\left|L_{uckGrade}-88\right|,89 \le L_{uckGrade}<90:1.933+0.01\left|L_{uckGrade}-89\right|,90 \le L_{uckGrade}<91:1.943+0.009\left|L_{uckGrade}-90\right|,91 \le L_{uckGrade}<92:1.952+0.01\left|L_{uckGrade}-91\right|,92 \le L_{uckGrade}<94:1.962+0.009\left|L_{uckGrade}-92\right|,94 \le L_{uckGrade}<95:1.98+0.01\left|L_{uckGrade}-94\right|,95 \le L_{uckGrade}<97:1.99+0.009\left|L_{uckGrade}-95\right|,97 \le L_{uckGrade}<98:2.008+0.01\left|L_{uckGrade}-97\right|,98 \le L_{uckGrade}<101:2.018+0.009\left|L_{uckGrade}-98\right|,101 \le L_{uckGrade}<102:2.045+0.01\left|L_{uckGrade}-101\right|,102 \le L_{uckGrade}<116:2.055+0.009\left|L_{uckGrade}-102\right|,116 \le L_{uckGrade}<117:2.181+0.008\left|L_{uckGrade}-116\right|,117 \le L_{uckGrade}<121:2.189+0.009\left|L_{uckGrade}-117\right|,121 \le L_{uckGrade}<122:2.225+0.008\left|L_{uckGrade}-121\right|,122 \le L_{uckGrade}<124:2.233+0.009\left|L_{uckGrade}-122\right|,124 \le L_{uckGrade}<125:2.251+0.008\left|L_{uckGrade}-124\right|,125 \le L_{uckGrade}<126:2.259+0.009\left|L_{uckGrade}-125\right|,126 \le L_{uckGrade}<127:2.268+0.008\left|L_{uckGrade}-126\right|,127 \le L_{uckGrade}<129:2.276+0.009\left|L_{uckGrade}-127\right|,129 \le L_{uckGrade}<130:2.294+0.008\left|L_{uckGrade}-129\right|,130 \le L_{uckGrade}<131:2.302+0.009\left|L_{uckGrade}-130\right|,131 \le L_{uckGrade}<132:2.311+0.008\left|L_{uckGrade}-131\right|,132 \le L_{uckGrade}<133:2.319+0.009\left|L_{uckGrade}-132\right|,133 \le L_{uckGrade}<135:2.328+0.008\left|L_{uckGrade}-133\right|,135 \le L_{uckGrade}<136:2.344+0.009\left|L_{uckGrade}-135\right|,136 \le L_{uckGrade}<137:2.353+0.008\left|L_{uckGrade}-136\right|,137 \le L_{uckGrade}<138:2.361+0.009\left|L_{uckGrade}-137\right|,138 \le L_{uckGrade}<141:2.37+0.008\left|L_{uckGrade}-138\right|,141 \le L_{uckGrade}<142:2.394+0.009\left|L_{uckGrade}-141\right|,142 \le L_{uckGrade}<145:2.403+0.008\left|L_{uckGrade}-142\right|,145 \le L_{uckGrade}<146:2.427+0.009\left|L_{uckGrade}-145\right|,146 \le L_{uckGrade}<159:2.436+0.008\left|L_{uckGrade}-146\right|,159 \le L_{uckGrade}<160:2.54+0.007\left|L_{uckGrade}-159\right|,160 \le L_{uckGrade}<164:2.547+0.008\left|L_{uckGrade}-160\right|,164 \le L_{uckGrade}<165:2.579+0.007\left|L_{uckGrade}-164\right|,165 \le L_{uckGrade}<167:2.586+0.008\left|L_{uckGrade}-165\right|,167 \le L_{uckGrade}<168:2.602+0.007\left|L_{uckGrade}-167\right|,168 \le L_{uckGrade}<170:2.609+0.008\left|L_{uckGrade}-168\right|,170 \le L_{uckGrade}<171:2.625+0.007\left|L_{uckGrade}-170\right|,171 \le L_{uckGrade}<172:2.632+0.008\left|L_{uckGrade}-171\right|,172 \le L_{uckGrade}<173:2.64+0.007\left|L_{uckGrade}-172\right|,173 \le L_{uckGrade}<174:2.647+0.008\left|L_{uckGrade}-173\right|,174 \le L_{uckGrade}<175:2.655+0.007\left|L_{uckGrade}-174\right|,175 \le L_{uckGrade}<176:2.662+0.008\left|L_{uckGrade}-175\right|,176 \le L_{uckGrade}<177:2.67+0.007\left|L_{uckGrade}-176\right|,177 \le L_{uckGrade}<178:2.677+0.008\left|L_{uckGrade}-177\right|,178 \le L_{uckGrade}<180:2.685+0.007\left|L_{uckGrade}-178\right|,180 \le L_{uckGrade}<181:2.699+0.008\left|L_{uckGrade}-180\right|,181 \le L_{uckGrade}<183:2.707+0.007\left|L_{uckGrade}-181\right|,183 \le L_{uckGrade}<184:2.721+0.008\left|L_{uckGrade}-183\right|,184 \le L_{uckGrade}<186:2.729+0.007\left|L_{uckGrade}-184\right|,186 \le L_{uckGrade}<187:2.743+0.008\left|L_{uckGrade}-186\right|,187 \le L_{uckGrade}<205:2.751+0.007\left|L_{uckGrade}-187\right|,205 \le L_{uckGrade}<206:2.877+0.006\left|L_{uckGrade}-205\right|,206 \le L_{uckGrade}<209:2.883+0.007\left|L_{uckGrade}-206\right|,209 \le L_{uckGrade}<210:2.904+0.006\left|L_{uckGrade}-209\right|,210 \le L_{uckGrade}<212:2.91+0.007\left|L_{uckGrade}-210\right|,212 \le L_{uckGrade}<213:2.924+0.006\left|L_{uckGrade}-212\right|,213 \le L_{uckGrade}<214:2.93+0.007\left|L_{uckGrade}-213\right|,214 \le L_{uckGrade}<215:2.937+0.006\left|L_{uckGrade}-214\right|,215 \le L_{uckGrade}<216:2.943+0.007\left|L_{uckGrade}-215\right|,216 \le L_{uckGrade}<217:2.95+0.006\left|L_{uckGrade}-216\right|,217 \le L_{uckGrade}<218:2.956+0.007\left|L_{uckGrade}-217\right|,218 \le L_{uckGrade}<219:2.963+0.006\left|L_{uckGrade}-218\right|,219 \le L_{uckGrade}<220:2.969+0.007\left|L_{uckGrade}-219\right|,220 \le L_{uckGrade}<221:2.976+0.006\left|L_{uckGrade}-220\right|,221 \le L_{uckGrade}<222:2.982+0.007\left|L_{uckGrade}-221\right|,222 \le L_{uckGrade}<223:2.989+0.006\left|L_{uckGrade}-222\right|,223 \le L_{uckGrade}<224:2.995+0.007\left|L_{uckGrade}-223\right|,224 \le L_{uckGrade}<226:3.002+0.006\left|L_{uckGrade}-224\right|,226 \le L_{uckGrade}<227:3.014+0.007\left|L_{uckGrade}-226\right|,227 \le L_{uckGrade}<230:3.021+0.006\left|L_{uckGrade}-227\right|,230 \le L_{uckGrade}<231:3.039+0.007\left|L_{uckGrade}-230\right|,231 \le L_{uckGrade}<248:3.046+0.006\left|L_{uckGrade}-231\right|,248 \le L_{uckGrade}<249:3.148+0.005\left|L_{uckGrade}-248\right|,249 \le L_{uckGrade}<252:3.153+0.006\left|L_{uckGrade}-249\right|,252 \le L_{uckGrade}<253:3.171+0.005\left|L_{uckGrade}-252\right|,253 \le L_{uckGrade}<255:3.176+0.006\left|L_{uckGrade}-253\right|,255 \le L_{uckGrade}<256:3.188+0.005\left|L_{uckGrade}-255\right|,256 \le L_{uckGrade}<257:3.193+0.006\left|L_{uckGrade}-256\right|,257 \le L_{uckGrade}<258:3.199+0.005\left|L_{uckGrade}-257\right|,258 \le L_{uckGrade}<260:3.204+0.006\left|L_{uckGrade}-258\right|,260 \le L_{uckGrade}<261:3.216+0.005\left|L_{uckGrade}-260\right|,261 \le L_{uckGrade}<262:3.221+0.006\left|L_{uckGrade}-261\right|,262 \le L_{uckGrade}<263:3.227+0.005\left|L_{uckGrade}-262\right|,263 \le L_{uckGrade}<264:3.232+0.006\left|L_{uckGrade}-263\right|,264 \le L_{uckGrade}<266:3.238+0.005\left|L_{uckGrade}-264\right|,266 \le L_{uckGrade}<267:3.248+0.006\left|L_{uckGrade}-266\right|,267 \le L_{uckGrade}<269:3.254+0.005\left|L_{uckGrade}-267\right|,269 \le L_{uckGrade}<270:3.264+0.006\left|L_{uckGrade}-269\right|,270 \le L_{uckGrade}<272:3.27+0.005\left|L_{uckGrade}-270\right|,272 \le L_{uckGrade}<273:3.28+0.006\left|L_{uckGrade}-272\right|,273 \le L_{uckGrade}<278:3.286+0.005\left|L_{uckGrade}-273\right|,278 \le L_{uckGrade}<279:3.311+0.006\left|L_{uckGrade}-278\right|,279 \le L_{uckGrade}<287:3.317+0.005\left|L_{uckGrade}-279\right|,287 \le L_{uckGrade}<288:3.357+0.004\left|L_{uckGrade}-287\right|,288 \le L_{uckGrade}<293:3.361+0.005\left|L_{uckGrade}-288\right|,293 \le L_{uckGrade}<294:3.386+0.004\left|L_{uckGrade}-293\right|,294 \le L_{uckGrade}<297:3.39+0.005\left|L_{uckGrade}-294\right|,297 \le L_{uckGrade}<298:3.405+0.004\left|L_{uckGrade}-297\right|,298 \le L_{uckGrade}<299:3.409+0.005\left|L_{uckGrade}-298\right|,299 \le L_{uckGrade}<300:3.414+0.004\left|L_{uckGrade}-299\right|,300 \le L_{uckGrade}<302:3.418+0.005\left|L_{uckGrade}-300\right|,302 \le L_{uckGrade}<303:3.428+0.004\left|L_{uckGrade}-302\right|,303 \le L_{uckGrade}<304:3.432+0.005\left|L_{uckGrade}-303\right|,304 \le L_{uckGrade}<305:3.437+0.004\left|L_{uckGrade}-304\right|,305 \le L_{uckGrade}<306:3.441+0.005\left|L_{uckGrade}-305\right|,306 \le L_{uckGrade}<307:3.446+0.004\left|L_{uckGrade}-306\right|,307 \le L_{uckGrade}<308:3.45+0.005\left|L_{uckGrade}-307\right|,308 \le L_{uckGrade}<310:3.455+0.004\left|L_{uckGrade}-308\right|,310 \le L_{uckGrade}<311:3.463+0.005\left|L_{uckGrade}-310\right|,311 \le L_{uckGrade}<313:3.468+0.004\left|L_{uckGrade}-311\right|,313 \le L_{uckGrade}<314:3.476+0.005\left|L_{uckGrade}-313\right|,314 \le L_{uckGrade}<316:3.481+0.004\left|L_{uckGrade}-314\right|,316 \le L_{uckGrade}<317:3.489+0.005\left|L_{uckGrade}-316\right|,317 \le L_{uckGrade}<323:3.494+0.004\left|L_{uckGrade}-317\right|,323 \le L_{uckGrade}<324:3.518+0.005\left|L_{uckGrade}-323\right|,324 \le L_{uckGrade}<329:3.523+0.004\left|L_{uckGrade}-324\right|,329 \le L_{uckGrade}<330:3.543+0.003\left|L_{uckGrade}-329\right|,330 \le L_{uckGrade}<336:3.546+0.004\left|L_{uckGrade}-330\right|,336 \le L_{uckGrade}<337:3.57+0.003\left|L_{uckGrade}-336\right|,337 \le L_{uckGrade}<340:3.573+0.004\left|L_{uckGrade}-337\right|,340 \le L_{uckGrade}<341:3.585+0.003\left|L_{uckGrade}-340\right|,341 \le L_{uckGrade}<342:3.588+0.004\left|L_{uckGrade}-341\right|,342 \le L_{uckGrade}<343:3.592+0.003\left|L_{uckGrade}-342\right|,343 \le L_{uckGrade}<345:3.595+0.004\left|L_{uckGrade}-343\right|,345 \le L_{uckGrade}<346:3.603+0.003\left|L_{uckGrade}-345\right|,346 \le L_{uckGrade}<347:3.606+0.004\left|L_{uckGrade}-346\right|,347 \le L_{uckGrade}<348:3.61+0.003\left|L_{uckGrade}-347\right|,348 \le L_{uckGrade}<349:3.613+0.004\left|L_{uckGrade}-348\right|,349 \le L_{uckGrade}<350:3.617+0.003\left|L_{uckGrade}-349\right|,350 \le L_{uckGrade}<351:3.62+0.004\left|L_{uckGrade}-350\right|,351 \le L_{uckGrade}<352:3.624+0.003\left|L_{uckGrade}-351\right|,352 \le L_{uckGrade}<353:3.627+0.004\left|L_{uckGrade}-352\right|,353 \le L_{uckGrade}<355:3.631+0.003\left|L_{uckGrade}-353\right|,355 \le L_{uckGrade}<356:3.637+0.004\left|L_{uckGrade}-355\right|,356 \le L_{uckGrade}<359:3.641+0.003\left|L_{uckGrade}-356\right|,359 \le L_{uckGrade}<360:3.65+0.004\left|L_{uckGrade}-359\right|,360 \le L_{uckGrade}<364:3.654+0.003\left|L_{uckGrade}-360\right|,364 \le L_{uckGrade}<365:3.666+0.004\left|L_{uckGrade}-364\right|,365 \le L_{uckGrade}<376:3.67+0.003\left|L_{uckGrade}-365\right|,376 \le L_{uckGrade}<377:3.703+0.002\left|L_{uckGrade}-376\right|,377 \le L_{uckGrade}<381:3.705+0.003\left|L_{uckGrade}-377\right|,381 \le L_{uckGrade}<382:3.717+0.002\left|L_{uckGrade}-381\right|,382 \le L_{uckGrade}<384:3.719+0.003\left|L_{uckGrade}-382\right|,384 \le L_{uckGrade}<385:3.725+0.002\left|L_{uckGrade}-384\right|,385 \le L_{uckGrade}<387:3.727+0.003\left|L_{uckGrade}-385\right|,387 \le L_{uckGrade}<388:3.733+0.002\left|L_{uckGrade}-387\right|,388 \le L_{uckGrade}<389:3.735+0.003\left|L_{uckGrade}-388\right|,389 \le L_{uckGrade}<390:3.738+0.002\left|L_{uckGrade}-389\right|,390 \le L_{uckGrade}<391:3.74+0.003\left|L_{uckGrade}-390\right|,391 \le L_{uckGrade}<392:3.743+0.002\left|L_{uckGrade}-391\right|,392 \le L_{uckGrade}<393:3.745+0.003\left|L_{uckGrade}-392\right|,393 \le L_{uckGrade}<394:3.748+0.002\left|L_{uckGrade}-393\right|,394 \le L_{uckGrade}<395:3.75+0.003\left|L_{uckGrade}-394\right|,395 \le L_{uckGrade}<396:3.753+0.002\left|L_{uckGrade}-395\right|,396 \le L_{uckGrade}<397:3.755+0.003\left|L_{uckGrade}-396\right|,397 \le L_{uckGrade}<399:3.758+0.002\left|L_{uckGrade}-397\right|,399 \le L_{uckGrade}<400:3.762+0.003\left|L_{uckGrade}-399\right|,400 \le L_{uckGrade}<403:3.765+0.002\left|L_{uckGrade}-400\right|,403 \le L_{uckGrade}<404:3.771+0.003\left|L_{uckGrade}-403\right|,404 \le L_{uckGrade}<409:3.774+0.002\left|L_{uckGrade}-404\right|,409 \le L_{uckGrade}<410:3.784+0.003\left|L_{uckGrade}-409\right|,410 \le L_{uckGrade}<417:3.787+0.002\left|L_{uckGrade}-410\right|,417 \le L_{uckGrade}<418:3.801+0.001\left|L_{uckGrade}-417\right|,418 \le L_{uckGrade}<423:3.802+0.002\left|L_{uckGrade}-418\right|,423 \le L_{uckGrade}<424:3.812+0.001\left|L_{uckGrade}-423\right|,424 \le L_{uckGrade}<427:3.813+0.002\left|L_{uckGrade}-424\right|,427 \le L_{uckGrade}<428:3.819+0.001\left|L_{uckGrade}-427\right|,428 \le L_{uckGrade}<430:3.82+0.002\left|L_{uckGrade}-428\right|,430 \le L_{uckGrade}<431:3.824+0.001\left|L_{uckGrade}-430\right|,431 \le L_{uckGrade}<432:3.825+0.002\left|L_{uckGrade}-431\right|,432 \le L_{uckGrade}<433:3.827+0.001\left|L_{uckGrade}-432\right|,433 \le L_{uckGrade}<434:3.828+0.002\left|L_{uckGrade}-433\right|,434 \le L_{uckGrade}<435:3.83+0.001\left|L_{uckGrade}-434\right|,435 \le L_{uckGrade}<436:3.831+0.002\left|L_{uckGrade}-435\right|,436 \le L_{uckGrade}<437:3.833+0.001\left|L_{uckGrade}-436\right|,437 \le L_{uckGrade}<438:3.834+0.002\left|L_{uckGrade}-437\right|,438 \le L_{uckGrade}<439:3.836+0.001\left|L_{uckGrade}-438\right|,439 \le L_{uckGrade}<440:3.837+0.002\left|L_{uckGrade}-439\right|,440 \le L_{uckGrade}<442:3.839+0.001\left|L_{uckGrade}-440\right|,442 \le L_{uckGrade}<443:3.841+0.002\left|L_{uckGrade}-442\right|,443 \le L_{uckGrade}<445:3.843+0.001\left|L_{uckGrade}-443\right|,445 \le L_{uckGrade}<446:3.845+0.002\left|L_{uckGrade}-445\right|,446 \le L_{uckGrade}<450:3.847+0.001\left|L_{uckGrade}-446\right|,450 \le L_{uckGrade}<451:3.851+0.002\left|L_{uckGrade}-450\right|,451 \le L_{uckGrade}<463:3.853+0.001\left|L_{uckGrade}-451\right|,463 \le L_{uckGrade}<464:3.865+0\left|L_{uckGrade}-463\right|,464 \le L_{uckGrade}<468:3.865+0.001\left|L_{uckGrade}-464\right|,468 \le L_{uckGrade}<469:3.869+0\left|L_{uckGrade}-468\right|,469 \le L_{uckGrade}<471:3.869+0.001\left|L_{uckGrade}-469\right|,471 \le L_{uckGrade}<472:3.871+0\left|L_{uckGrade}-471\right|,472 \le L_{uckGrade}<474:3.871+0.001\left|L_{uckGrade}-472\right|,474 \le L_{uckGrade}<475:3.873+0\left|L_{uckGrade}-474\right|,475 \le L_{uckGrade}<476:3.873+0.001\left|L_{uckGrade}-475\right|,476 \le L_{uckGrade}<477:3.874+0\left|L_{uckGrade}-476\right|,477 \le L_{uckGrade}<478:3.874+0.001\left|L_{uckGrade}-477\right|,478 \le L_{uckGrade}<479:3.875+0\left|L_{uckGrade}-478\right|,479 \le L_{uckGrade}<480:3.875+0.001\left|L_{uckGrade}-479\right|,480 \le L_{uckGrade}<481:3.876+0\left|L_{uckGrade}-480\right|,481 \le L_{uckGrade}<482:3.876+0.001\left|L_{uckGrade}-481\right|,482 \le L_{uckGrade}<483:3.877+0\left|L_{uckGrade}-482\right|,483 \le L_{uckGrade}<484:3.877+0.001\left|L_{uckGrade}-483\right|,484 \le L_{uckGrade}<486:3.878+0\left|L_{uckGrade}-484\right|,486 \le L_{uckGrade}<487:3.878+0.001\left|L_{uckGrade}-486\right|,487 \le L_{uckGrade}<490:3.879+0\left|L_{uckGrade}-487\right|,490 \le L_{uckGrade}<491:3.879+0.001\left|L_{uckGrade}-490\right|,491 \le L_{uckGrade}<495:3.88+0\left|L_{uckGrade}-491\right|,495 \le L_{uckGrade}<496:3.88+0.001\left|L_{uckGrade}-495\right|,496 \le L_{uckGrade}<500:3.881+0\left|L_{uckGrade}-496\right|\right\}</pre> | |||
|luckgrade06=<pre>L_{uckGrade06}(L_{uckGrade})=\left\{0 \le L_{uckGrade}<6:1+0.013\left|L_{uckGrade}-0\right|,6 \le L_{uckGrade}<7:1.078+0.012\left|L_{uckGrade}-6\right|,7 \le L_{uckGrade}<11:1.09+0.013\left|L_{uckGrade}-7\right|,11 \le L_{uckGrade}<12:1.142+0.012\left|L_{uckGrade}-11\right|,12 \le L_{uckGrade}<14:1.154+0.013\left|L_{uckGrade}-12\right|,14 \le L_{uckGrade}<15:1.18+0.012\left|L_{uckGrade}-14\right|,15 \le L_{uckGrade}<16:1.192+0.013\left|L_{uckGrade}-15\right|,16 \le L_{uckGrade}<17:1.205+0.012\left|L_{uckGrade}-16\right|,17 \le L_{uckGrade}<19:1.217+0.013\left|L_{uckGrade}-17\right|,19 \le L_{uckGrade}<20:1.243+0.012\left|L_{uckGrade}-19\right|,20 \le L_{uckGrade}<21:1.255+0.013\left|L_{uckGrade}-20\right|,21 \le L_{uckGrade}<23:1.268+0.012\left|L_{uckGrade}-21\right|,23 \le L_{uckGrade}<24:1.292+0.013\left|L_{uckGrade}-23\right|,24 \le L_{uckGrade}<25:1.305+0.012\left|L_{uckGrade}-24\right|,25 \le L_{uckGrade}<26:1.317+0.013\left|L_{uckGrade}-25\right|,26 \le L_{uckGrade}<29:1.33+0.012\left|L_{uckGrade}-26\right|,29 \le L_{uckGrade}<30:1.366+0.013\left|L_{uckGrade}-29\right|,30 \le L_{uckGrade}<34:1.379+0.012\left|L_{uckGrade}-30\right|,34 \le L_{uckGrade}<35:1.427+0.013\left|L_{uckGrade}-34\right|,35 \le L_{uckGrade}<43:1.44+0.012\left|L_{uckGrade}-35\right|,43 \le L_{uckGrade}<44:1.536+0.011\left|L_{uckGrade}-43\right|,44 \le L_{uckGrade}<48:1.547+0.012\left|L_{uckGrade}-44\right|,48 \le L_{uckGrade}<49:1.595+0.011\left|L_{uckGrade}-48\right|,49 \le L_{uckGrade}<52:1.606+0.012\left|L_{uckGrade}-49\right|,52 \le L_{uckGrade}<53:1.642+0.011\left|L_{uckGrade}-52\right|,53 \le L_{uckGrade}<54:1.653+0.012\left|L_{uckGrade}-53\right|,54 \le L_{uckGrade}<55:1.665+0.011\left|L_{uckGrade}-54\right|,55 \le L_{uckGrade}<57:1.676+0.012\left|L_{uckGrade}-55\right|,57 \le L_{uckGrade}<58:1.7+0.011\left|L_{uckGrade}-57\right|,58 \le L_{uckGrade}<59:1.711+0.012\left|L_{uckGrade}-58\right|,59 \le L_{uckGrade}<61:1.723+0.011\left|L_{uckGrade}-59\right|,61 \le L_{uckGrade}<62:1.745+0.012\left|L_{uckGrade}-61\right|,62 \le L_{uckGrade}<63:1.757+0.011\left|L_{uckGrade}-62\right|,63 \le L_{uckGrade}<64:1.768+0.012\left|L_{uckGrade}-63\right|,64 \le L_{uckGrade}<66:1.78+0.011\left|L_{uckGrade}-64\right|,66 \le L_{uckGrade}<67:1.802+0.012\left|L_{uckGrade}-66\right|,67 \le L_{uckGrade}<71:1.814+0.011\left|L_{uckGrade}-67\right|,71 \le L_{uckGrade}<72:1.858+0.012\left|L_{uckGrade}-71\right|,72 \le L_{uckGrade}<83:1.87+0.011\left|L_{uckGrade}-72\right|,83 \le L_{uckGrade}<84:1.991+0.01\left|L_{uckGrade}-83\right|,84 \le L_{uckGrade}<87:2.001+0.011\left|L_{uckGrade}-84\right|,87 \le L_{uckGrade}<88:2.034+0.01\left|L_{uckGrade}-87\right|,88 \le L_{uckGrade}<91:2.044+0.011\left|L_{uckGrade}-88\right|,91 \le L_{uckGrade}<92:2.077+0.01\left|L_{uckGrade}-91\right|,92 \le L_{uckGrade}<93:2.087+0.011\left|L_{uckGrade}-92\right|,93 \le L_{uckGrade}<94:2.098+0.01\left|L_{uckGrade}-93\right|,94 \le L_{uckGrade}<95:2.108+0.011\left|L_{uckGrade}-94\right|,95 \le L_{uckGrade}<96:2.119+0.01\left|L_{uckGrade}-95\right|,96 \le L_{uckGrade}<97:2.129+0.011\left|L_{uckGrade}-96\right|,97 \le L_{uckGrade}<98:2.14+0.01\left|L_{uckGrade}-97\right|,98 \le L_{uckGrade}<99:2.15+0.011\left|L_{uckGrade}-98\right|,99 \le L_{uckGrade}<100:2.161+0.01\left|L_{uckGrade}-99\right|,100 \le L_{uckGrade}<101:2.171+0.011\left|L_{uckGrade}-100\right|,101 \le L_{uckGrade}<103:2.182+0.01\left|L_{uckGrade}-101\right|,103 \le L_{uckGrade}<104:2.202+0.011\left|L_{uckGrade}-103\right|,104 \le L_{uckGrade}<106:2.213+0.01\left|L_{uckGrade}-104\right|,106 \le L_{uckGrade}<107:2.233+0.011\left|L_{uckGrade}-106\right|,107 \le L_{uckGrade}<113:2.244+0.01\left|L_{uckGrade}-107\right|,113 \le L_{uckGrade}<114:2.304+0.011\left|L_{uckGrade}-113\right|,114 \le L_{uckGrade}<118:2.315+0.01\left|L_{uckGrade}-114\right|,118 \le L_{uckGrade}<119:2.355+0.009\left|L_{uckGrade}-118\right|,119 \le L_{uckGrade}<125:2.364+0.01\left|L_{uckGrade}-119\right|,125 \le L_{uckGrade}<126:2.424+0.009\left|L_{uckGrade}-125\right|,126 \le L_{uckGrade}<128:2.433+0.01\left|L_{uckGrade}-126\right|,128 \le L_{uckGrade}<129:2.453+0.009\left|L_{uckGrade}-128\right|,129 \le L_{uckGrade}<131:2.462+0.01\left|L_{uckGrade}-129\right|,131 \le L_{uckGrade}<132:2.482+0.009\left|L_{uckGrade}-131\right|,132 \le L_{uckGrade}<133:2.491+0.01\left|L_{uckGrade}-132\right|,133 \le L_{uckGrade}<134:2.501+0.009\left|L_{uckGrade}-133\right|,134 \le L_{uckGrade}<135:2.51+0.01\left|L_{uckGrade}-134\right|,135 \le L_{uckGrade}<136:2.52+0.009\left|L_{uckGrade}-135\right|,136 \le L_{uckGrade}<137:2.529+0.01\left|L_{uckGrade}-136\right|,137 \le L_{uckGrade}<138:2.539+0.009\left|L_{uckGrade}-137\right|,138 \le L_{uckGrade}<139:2.548+0.01\left|L_{uckGrade}-138\right|,139 \le L_{uckGrade}<141:2.558+0.009\left|L_{uckGrade}-139\right|,141 \le L_{uckGrade}<142:2.576+0.01\left|L_{uckGrade}-141\right|,142 \le L_{uckGrade}<144:2.586+0.009\left|L_{uckGrade}-142\right|,144 \le L_{uckGrade}<145:2.604+0.01\left|L_{uckGrade}-144\right|,145 \le L_{uckGrade}<150:2.614+0.009\left|L_{uckGrade}-145\right|,150 \le L_{uckGrade}<151:2.659+0.01\left|L_{uckGrade}-150\right|,151 \le L_{uckGrade}<158:2.669+0.009\left|L_{uckGrade}-151\right|,158 \le L_{uckGrade}<159:2.732+0.008\left|L_{uckGrade}-158\right|,159 \le L_{uckGrade}<163:2.74+0.009\left|L_{uckGrade}-159\right|,163 \le L_{uckGrade}<164:2.776+0.008\left|L_{uckGrade}-163\right|,164 \le L_{uckGrade}<167:2.784+0.009\left|L_{uckGrade}-164\right|,167 \le L_{uckGrade}<168:2.811+0.008\left|L_{uckGrade}-167\right|,168 \le L_{uckGrade}<170:2.819+0.009\left|L_{uckGrade}-168\right|,170 \le L_{uckGrade}<171:2.837+0.008\left|L_{uckGrade}-170\right|,171 \le L_{uckGrade}<172:2.845+0.009\left|L_{uckGrade}-171\right|,172 \le L_{uckGrade}<173:2.854+0.008\left|L_{uckGrade}-172\right|,173 \le L_{uckGrade}<174:2.862+0.009\left|L_{uckGrade}-173\right|,174 \le L_{uckGrade}<175:2.871+0.008\left|L_{uckGrade}-174\right|,175 \le L_{uckGrade}<176:2.879+0.009\left|L_{uckGrade}-175\right|,176 \le L_{uckGrade}<178:2.888+0.008\left|L_{uckGrade}-176\right|,178 \le L_{uckGrade}<179:2.904+0.009\left|L_{uckGrade}-178\right|,179 \le L_{uckGrade}<181:2.913+0.008\left|L_{uckGrade}-179\right|,181 \le L_{uckGrade}<182:2.929+0.009\left|L_{uckGrade}-181\right|,182 \le L_{uckGrade}<185:2.938+0.008\left|L_{uckGrade}-182\right|,185 \le L_{uckGrade}<186:2.962+0.009\left|L_{uckGrade}-185\right|,186 \le L_{uckGrade}<200:2.971+0.008\left|L_{uckGrade}-186\right|,200 \le L_{uckGrade}<201:3.083+0.007\left|L_{uckGrade}-200\right|,201 \le L_{uckGrade}<204:3.09+0.008\left|L_{uckGrade}-201\right|,204 \le L_{uckGrade}<205:3.114+0.007\left|L_{uckGrade}-204\right|,205 \le L_{uckGrade}<207:3.121+0.008\left|L_{uckGrade}-205\right|,207 \le L_{uckGrade}<208:3.137+0.007\left|L_{uckGrade}-207\right|,208 \le L_{uckGrade}<209:3.144+0.008\left|L_{uckGrade}-208\right|,209 \le L_{uckGrade}<210:3.152+0.007\left|L_{uckGrade}-209\right|,210 \le L_{uckGrade}<211:3.159+0.008\left|L_{uckGrade}-210\right|,211 \le L_{uckGrade}<212:3.167+0.007\left|L_{uckGrade}-211\right|,212 \le L_{uckGrade}<213:3.174+0.008\left|L_{uckGrade}-212\right|,213 \le L_{uckGrade}<214:3.182+0.007\left|L_{uckGrade}-213\right|,214 \le L_{uckGrade}<215:3.189+0.008\left|L_{uckGrade}-214\right|,215 \le L_{uckGrade}<216:3.197+0.007\left|L_{uckGrade}-215\right|,216 \le L_{uckGrade}<217:3.204+0.008\left|L_{uckGrade}-216\right|,217 \le L_{uckGrade}<219:3.212+0.007\left|L_{uckGrade}-217\right|,219 \le L_{uckGrade}<220:3.226+0.008\left|L_{uckGrade}-219\right|,220 \le L_{uckGrade}<223:3.234+0.007\left|L_{uckGrade}-220\right|,223 \le L_{uckGrade}<224:3.255+0.008\left|L_{uckGrade}-223\right|,224 \le L_{uckGrade}<239:3.263+0.007\left|L_{uckGrade}-224\right|,239 \le L_{uckGrade}<240:3.368+0.006\left|L_{uckGrade}-239\right|,240 \le L_{uckGrade}<243:3.374+0.007\left|L_{uckGrade}-240\right|,243 \le L_{uckGrade}<244:3.395+0.006\left|L_{uckGrade}-243\right|,244 \le L_{uckGrade}<245:3.401+0.007\left|L_{uckGrade}-244\right|,245 \le L_{uckGrade}<246:3.408+0.006\left|L_{uckGrade}-245\right|,246 \le L_{uckGrade}<248:3.414+0.007\left|L_{uckGrade}-246\right|,248 \le L_{uckGrade}<249:3.428+0.006\left|L_{uckGrade}-248\right|,249 \le L_{uckGrade}<250:3.434+0.007\left|L_{uckGrade}-249\right|,250 \le L_{uckGrade}<251:3.441+0.006\left|L_{uckGrade}-250\right|,251 \le L_{uckGrade}<252:3.447+0.007\left|L_{uckGrade}-251\right|,252 \le L_{uckGrade}<253:3.454+0.006\left|L_{uckGrade}-252\right|,253 \le L_{uckGrade}<254:3.46+0.007\left|L_{uckGrade}-253\right|,254 \le L_{uckGrade}<256:3.467+0.006\left|L_{uckGrade}-254\right|,256 \le L_{uckGrade}<257:3.479+0.007\left|L_{uckGrade}-256\right|,257 \le L_{uckGrade}<259:3.486+0.006\left|L_{uckGrade}-257\right|,259 \le L_{uckGrade}<260:3.498+0.007\left|L_{uckGrade}-259\right|,260 \le L_{uckGrade}<264:3.505+0.006\left|L_{uckGrade}-260\right|,264 \le L_{uckGrade}<265:3.529+0.007\left|L_{uckGrade}-264\right|,265 \le L_{uckGrade}<274:3.536+0.006\left|L_{uckGrade}-265\right|,274 \le L_{uckGrade}<275:3.59+0.005\left|L_{uckGrade}-274\right|,275 \le L_{uckGrade}<279:3.595+0.006\left|L_{uckGrade}-275\right|,279 \le L_{uckGrade}<280:3.619+0.005\left|L_{uckGrade}-279\right|,280 \le L_{uckGrade}<283:3.624+0.006\left|L_{uckGrade}-280\right|,283 \le L_{uckGrade}<284:3.642+0.005\left|L_{uckGrade}-283\right|,284 \le L_{uckGrade}<285:3.647+0.006\left|L_{uckGrade}-284\right|,285 \le L_{uckGrade}<286:3.653+0.005\left|L_{uckGrade}-285\right|,286 \le L_{uckGrade}<287:3.658+0.006\left|L_{uckGrade}-286\right|,287 \le L_{uckGrade}<288:3.664+0.005\left|L_{uckGrade}-287\right|,288 \le L_{uckGrade}<289:3.669+0.006\left|L_{uckGrade}-288\right|,289 \le L_{uckGrade}<290:3.675+0.005\left|L_{uckGrade}-289\right|,290 \le L_{uckGrade}<291:3.68+0.006\left|L_{uckGrade}-290\right|,291 \le L_{uckGrade}<292:3.686+0.005\left|L_{uckGrade}-291\right|,292 \le L_{uckGrade}<293:3.691+0.006\left|L_{uckGrade}-292\right|,293 \le L_{uckGrade}<294:3.697+0.005\left|L_{uckGrade}-293\right|,294 \le L_{uckGrade}<295:3.702+0.006\left|L_{uckGrade}-294\right|,295 \le L_{uckGrade}<298:3.708+0.005\left|L_{uckGrade}-295\right|,298 \le L_{uckGrade}<299:3.723+0.006\left|L_{uckGrade}-298\right|,299 \le L_{uckGrade}<303:3.729+0.005\left|L_{uckGrade}-299\right|,303 \le L_{uckGrade}<304:3.749+0.006\left|L_{uckGrade}-303\right|,304 \le L_{uckGrade}<312:3.755+0.005\left|L_{uckGrade}-304\right|,312 \le L_{uckGrade}<313:3.795+0.004\left|L_{uckGrade}-312\right|,313 \le L_{uckGrade}<318:3.799+0.005\left|L_{uckGrade}-313\right|,318 \le L_{uckGrade}<319:3.824+0.004\left|L_{uckGrade}-318\right|,319 \le L_{uckGrade}<321:3.828+0.005\left|L_{uckGrade}-319\right|,321 \le L_{uckGrade}<322:3.838+0.004\left|L_{uckGrade}-321\right|,322 \le L_{uckGrade}<324:3.842+0.005\left|L_{uckGrade}-322\right|,324 \le L_{uckGrade}<325:3.852+0.004\left|L_{uckGrade}-324\right|,325 \le L_{uckGrade}<326:3.856+0.005\left|L_{uckGrade}-325\right|,326 \le L_{uckGrade}<327:3.861+0.004\left|L_{uckGrade}-326\right|,327 \le L_{uckGrade}<328:3.865+0.005\left|L_{uckGrade}-327\right|,328 \le L_{uckGrade}<329:3.87+0.004\left|L_{uckGrade}-328\right|,329 \le L_{uckGrade}<330:3.874+0.005\left|L_{uckGrade}-329\right|,330 \le L_{uckGrade}<332:3.879+0.004\left|L_{uckGrade}-330\right|,332 \le L_{uckGrade}<333:3.887+0.005\left|L_{uckGrade}-332\right|,333 \le L_{uckGrade}<335:3.892+0.004\left|L_{uckGrade}-333\right|,335 \le L_{uckGrade}<336:3.9+0.005\left|L_{uckGrade}-335\right|,336 \le L_{uckGrade}<339:3.905+0.004\left|L_{uckGrade}-336\right|,339 \le L_{uckGrade}<340:3.917+0.005\left|L_{uckGrade}-339\right|,340 \le L_{uckGrade}<353:3.922+0.004\left|L_{uckGrade}-340\right|,353 \le L_{uckGrade}<354:3.974+0.003\left|L_{uckGrade}-353\right|,354 \le L_{uckGrade}<358:3.977+0.004\left|L_{uckGrade}-354\right|,358 \le L_{uckGrade}<359:3.993+0.003\left|L_{uckGrade}-358\right|,359 \le L_{uckGrade}<361:3.996+0.004\left|L_{uckGrade}-359\right|,361 \le L_{uckGrade}<362:4.004+0.003\left|L_{uckGrade}-361\right|,362 \le L_{uckGrade}<363:4.007+0.004\left|L_{uckGrade}-362\right|,363 \le L_{uckGrade}<364:4.011+0.003\left|L_{uckGrade}-363\right|,364 \le L_{uckGrade}<365:4.014+0.004\left|L_{uckGrade}-364\right|,365 \le L_{uckGrade}<366:4.018+0.003\left|L_{uckGrade}-365\right|,366 \le L_{uckGrade}<367:4.021+0.004\left|L_{uckGrade}-366\right|,367 \le L_{uckGrade}<368:4.025+0.003\left|L_{uckGrade}-367\right|,368 \le L_{uckGrade}<369:4.028+0.004\left|L_{uckGrade}-368\right|,369 \le L_{uckGrade}<371:4.032+0.003\left|L_{uckGrade}-369\right|,371 \le L_{uckGrade}<372:4.038+0.004\left|L_{uckGrade}-371\right|,372 \le L_{uckGrade}<374:4.042+0.003\left|L_{uckGrade}-372\right|,374 \le L_{uckGrade}<375:4.048+0.004\left|L_{uckGrade}-374\right|,375 \le L_{uckGrade}<378:4.052+0.003\left|L_{uckGrade}-375\right|,378 \le L_{uckGrade}<379:4.061+0.004\left|L_{uckGrade}-378\right|,379 \le L_{uckGrade}<391:4.065+0.003\left|L_{uckGrade}-379\right|,391 \le L_{uckGrade}<392:4.101+0.002\left|L_{uckGrade}-391\right|,392 \le L_{uckGrade}<396:4.103+0.003\left|L_{uckGrade}-392\right|,396 \le L_{uckGrade}<397:4.115+0.002\left|L_{uckGrade}-396\right|,397 \le L_{uckGrade}<399:4.117+0.003\left|L_{uckGrade}-397\right|,399 \le L_{uckGrade}<400:4.123+0.002\left|L_{uckGrade}-399\right|,400 \le L_{uckGrade}<401:4.125+0.003\left|L_{uckGrade}-400\right|,401 \le L_{uckGrade}<402:4.128+0.002\left|L_{uckGrade}-401\right|,402 \le L_{uckGrade}<403:4.13+0.003\left|L_{uckGrade}-402\right|,403 \le L_{uckGrade}<404:4.133+0.002\left|L_{uckGrade}-403\right|,404 \le L_{uckGrade}<405:4.135+0.003\left|L_{uckGrade}-404\right|,405 \le L_{uckGrade}<406:4.138+0.002\left|L_{uckGrade}-405\right|,406 \le L_{uckGrade}<407:4.14+0.003\left|L_{uckGrade}-406\right|,407 \le L_{uckGrade}<408:4.143+0.002\left|L_{uckGrade}-407\right|,408 \le L_{uckGrade}<409:4.145+0.003\left|L_{uckGrade}-408\right|,409 \le L_{uckGrade}<411:4.148+0.002\left|L_{uckGrade}-409\right|,411 \le L_{uckGrade}<412:4.152+0.003\left|L_{uckGrade}-411\right|,412 \le L_{uckGrade}<415:4.155+0.002\left|L_{uckGrade}-412\right|,415 \le L_{uckGrade}<416:4.161+0.003\left|L_{uckGrade}-415\right|,416 \le L_{uckGrade}<432:4.164+0.002\left|L_{uckGrade}-416\right|,432 \le L_{uckGrade}<433:4.196+0.001\left|L_{uckGrade}-432\right|,433 \le L_{uckGrade}<435:4.197+0.002\left|L_{uckGrade}-433\right|,435 \le L_{uckGrade}<436:4.201+0.001\left|L_{uckGrade}-435\right|,436 \le L_{uckGrade}<438:4.202+0.002\left|L_{uckGrade}-436\right|,438 \le L_{uckGrade}<439:4.206+0.001\left|L_{uckGrade}-438\right|,439 \le L_{uckGrade}<440:4.207+0.002\left|L_{uckGrade}-439\right|,440 \le L_{uckGrade}<441:4.209+0.001\left|L_{uckGrade}-440\right|,441 \le L_{uckGrade}<443:4.21+0.002\left|L_{uckGrade}-441\right|,443 \le L_{uckGrade}<445:4.214+0.001\left|L_{uckGrade}-443\right|,445 \le L_{uckGrade}<446:4.216+0.002\left|L_{uckGrade}-445\right|,446 \le L_{uckGrade}<447:4.218+0.001\left|L_{uckGrade}-446\right|,447 \le L_{uckGrade}<448:4.219+0.002\left|L_{uckGrade}-447\right|,448 \le L_{uckGrade}<450:4.221+0.001\left|L_{uckGrade}-448\right|,450 \le L_{uckGrade}<451:4.223+0.002\left|L_{uckGrade}-450\right|,451 \le L_{uckGrade}<454:4.225+0.001\left|L_{uckGrade}-451\right|,454 \le L_{uckGrade}<455:4.228+0.002\left|L_{uckGrade}-454\right|,455 \le L_{uckGrade}<469:4.23+0.001\left|L_{uckGrade}-455\right|,469 \le L_{uckGrade}<470:4.244+0\left|L_{uckGrade}-469\right|,470 \le L_{uckGrade}<473:4.244+0.001\left|L_{uckGrade}-470\right|,473 \le L_{uckGrade}<474:4.247+0\left|L_{uckGrade}-473\right|,474 \le L_{uckGrade}<476:4.247+0.001\left|L_{uckGrade}-474\right|,476 \le L_{uckGrade}<477:4.249+0\left|L_{uckGrade}-476\right|,477 \le L_{uckGrade}<478:4.249+0.001\left|L_{uckGrade}-477\right|,478 \le L_{uckGrade}<479:4.25+0\left|L_{uckGrade}-478\right|,479 \le L_{uckGrade}<481:4.25+0.001\left|L_{uckGrade}-479\right|,481 \le L_{uckGrade}<482:4.252+0\left|L_{uckGrade}-481\right|,482 \le L_{uckGrade}<483:4.252+0.001\left|L_{uckGrade}-482\right|,483 \le L_{uckGrade}<485:4.253+0\left|L_{uckGrade}-483\right|,485 \le L_{uckGrade}<486:4.253+0.001\left|L_{uckGrade}-485\right|,486 \le L_{uckGrade}<488:4.254+0\left|L_{uckGrade}-486\right|,488 \le L_{uckGrade}<489:4.254+0.001\left|L_{uckGrade}-488\right|,489 \le L_{uckGrade}<491:4.255+0\left|L_{uckGrade}-489\right|,491 \le L_{uckGrade}<492:4.255+0.001\left|L_{uckGrade}-491\right|,492 \le L_{uckGrade}<499:4.256+0\left|L_{uckGrade}-492\right|,499 \le L_{uckGrade}<500:4.256+0.001\left|L_{uckGrade}-499\right|\right\}</pre> | |||
|luckgrade07=<pre>L_{uckGrade07}(L_{uckGrade})=\left\{0 \le L_{uckGrade}<1:1+0.014\left|L_{uckGrade}-0\right|,1 \le L_{uckGrade}<3:1.014+0.013\left|L_{uckGrade}-1\right|,3 \le L_{uckGrade}<4:1.04+0.014\left|L_{uckGrade}-3\right|,4 \le L_{uckGrade}<5:1.054+0.013\left|L_{uckGrade}-4\right|,5 \le L_{uckGrade}<6:1.067+0.014\left|L_{uckGrade}-5\right|,6 \le L_{uckGrade}<8:1.081+0.013\left|L_{uckGrade}-6\right|,8 \le L_{uckGrade}<9:1.107+0.014\left|L_{uckGrade}-8\right|,9 \le L_{uckGrade}<13:1.121+0.013\left|L_{uckGrade}-9\right|,13 \le L_{uckGrade}<14:1.173+0.014\left|L_{uckGrade}-13\right|,14 \le L_{uckGrade}<24:1.187+0.013\left|L_{uckGrade}-14\right|,24 \le L_{uckGrade}<25:1.317+0.012\left|L_{uckGrade}-24\right|,25 \le L_{uckGrade}<29:1.329+0.013\left|L_{uckGrade}-25\right|,29 \le L_{uckGrade}<30:1.381+0.012\left|L_{uckGrade}-29\right|,30 \le L_{uckGrade}<32:1.393+0.013\left|L_{uckGrade}-30\right|,32 \le L_{uckGrade}<33:1.419+0.012\left|L_{uckGrade}-32\right|,33 \le L_{uckGrade}<34:1.431+0.013\left|L_{uckGrade}-33\right|,34 \le L_{uckGrade}<35:1.444+0.012\left|L_{uckGrade}-34\right|,35 \le L_{uckGrade}<37:1.456+0.013\left|L_{uckGrade}-35\right|,37 \le L_{uckGrade}<39:1.482+0.012\left|L_{uckGrade}-37\right|,39 \le L_{uckGrade}<40:1.506+0.013\left|L_{uckGrade}-39\right|,40 \le L_{uckGrade}<41:1.519+0.012\left|L_{uckGrade}-40\right|,41 \le L_{uckGrade}<42:1.531+0.013\left|L_{uckGrade}-41\right|,42 \le L_{uckGrade}<44:1.544+0.012\left|L_{uckGrade}-42\right|,44 \le L_{uckGrade}<45:1.568+0.013\left|L_{uckGrade}-44\right|,45 \le L_{uckGrade}<47:1.581+0.012\left|L_{uckGrade}-45\right|,47 \le L_{uckGrade}<48:1.605+0.013\left|L_{uckGrade}-47\right|,48 \le L_{uckGrade}<64:1.618+0.012\left|L_{uckGrade}-48\right|,64 \le L_{uckGrade}<65:1.81+0.011\left|L_{uckGrade}-64\right|,65 \le L_{uckGrade}<67:1.821+0.012\left|L_{uckGrade}-65\right|,67 \le L_{uckGrade}<68:1.845+0.011\left|L_{uckGrade}-67\right|,68 \le L_{uckGrade}<70:1.856+0.012\left|L_{uckGrade}-68\right|,70 \le L_{uckGrade}<71:1.88+0.011\left|L_{uckGrade}-70\right|,71 \le L_{uckGrade}<73:1.891+0.012\left|L_{uckGrade}-71\right|,73 \le L_{uckGrade}<74:1.915+0.011\left|L_{uckGrade}-73\right|,74 \le L_{uckGrade}<75:1.926+0.012\left|L_{uckGrade}-74\right|,75 \le L_{uckGrade}<77:1.938+0.011\left|L_{uckGrade}-75\right|,77 \le L_{uckGrade}<78:1.96+0.012\left|L_{uckGrade}-77\right|,78 \le L_{uckGrade}<79:1.972+0.011\left|L_{uckGrade}-78\right|,79 \le L_{uckGrade}<80:1.983+0.012\left|L_{uckGrade}-79\right|,80 \le L_{uckGrade}<82:1.995+0.011\left|L_{uckGrade}-80\right|,82 \le L_{uckGrade}<83:2.017+0.012\left|L_{uckGrade}-82\right|,83 \le L_{uckGrade}<87:2.029+0.011\left|L_{uckGrade}-83\right|,87 \le L_{uckGrade}<88:2.073+0.012\left|L_{uckGrade}-87\right|,88 \le L_{uckGrade}<99:2.085+0.011\left|L_{uckGrade}-88\right|,99 \le L_{uckGrade}<100:2.206+0.01\left|L_{uckGrade}-99\right|,100 \le L_{uckGrade}<103:2.216+0.011\left|L_{uckGrade}-100\right|,103 \le L_{uckGrade}<104:2.249+0.01\left|L_{uckGrade}-103\right|,104 \le L_{uckGrade}<106:2.259+0.011\left|L_{uckGrade}-104\right|,106 \le L_{uckGrade}<107:2.281+0.01\left|L_{uckGrade}-106\right|,107 \le L_{uckGrade}<109:2.291+0.011\left|L_{uckGrade}-107\right|,109 \le L_{uckGrade}<110:2.313+0.01\left|L_{uckGrade}-109\right|,110 \le L_{uckGrade}<111:2.323+0.011\left|L_{uckGrade}-110\right|,111 \le L_{uckGrade}<112:2.334+0.01\left|L_{uckGrade}-111\right|,112 \le L_{uckGrade}<113:2.344+0.011\left|L_{uckGrade}-112\right|,113 \le L_{uckGrade}<114:2.355+0.01\left|L_{uckGrade}-113\right|,114 \le L_{uckGrade}<115:2.365+0.011\left|L_{uckGrade}-114\right|,115 \le L_{uckGrade}<117:2.376+0.01\left|L_{uckGrade}-115\right|,117 \le L_{uckGrade}<118:2.396+0.011\left|L_{uckGrade}-117\right|,118 \le L_{uckGrade}<121:2.407+0.01\left|L_{uckGrade}-118\right|,121 \le L_{uckGrade}<122:2.437+0.011\left|L_{uckGrade}-121\right|,122 \le L_{uckGrade}<127:2.448+0.01\left|L_{uckGrade}-122\right|,127 \le L_{uckGrade}<128:2.498+0.011\left|L_{uckGrade}-127\right|,128 \le L_{uckGrade}<132:2.509+0.01\left|L_{uckGrade}-128\right|,132 \le L_{uckGrade}<133:2.549+0.009\left|L_{uckGrade}-132\right|,133 \le L_{uckGrade}<139:2.558+0.01\left|L_{uckGrade}-133\right|,139 \le L_{uckGrade}<140:2.618+0.009\left|L_{uckGrade}-139\right|,140 \le L_{uckGrade}<142:2.627+0.01\left|L_{uckGrade}-140\right|,142 \le L_{uckGrade}<143:2.647+0.009\left|L_{uckGrade}-142\right|,143 \le L_{uckGrade}<145:2.656+0.01\left|L_{uckGrade}-143\right|,145 \le L_{uckGrade}<146:2.676+0.009\left|L_{uckGrade}-145\right|,146 \le L_{uckGrade}<147:2.685+0.01\left|L_{uckGrade}-146\right|,147 \le L_{uckGrade}<148:2.695+0.009\left|L_{uckGrade}-147\right|,148 \le L_{uckGrade}<149:2.704+0.01\left|L_{uckGrade}-148\right|,149 \le L_{uckGrade}<150:2.714+0.009\left|L_{uckGrade}-149\right|,150 \le L_{uckGrade}<151:2.723+0.01\left|L_{uckGrade}-150\right|,151 \le L_{uckGrade}<152:2.733+0.009\left|L_{uckGrade}-151\right|,152 \le L_{uckGrade}<153:2.742+0.01\left|L_{uckGrade}-152\right|,153 \le L_{uckGrade}<155:2.752+0.009\left|L_{uckGrade}-153\right|,155 \le L_{uckGrade}<156:2.77+0.01\left|L_{uckGrade}-155\right|,156 \le L_{uckGrade}<159:2.78+0.009\left|L_{uckGrade}-156\right|,159 \le L_{uckGrade}<160:2.807+0.01\left|L_{uckGrade}-159\right|,160 \le L_{uckGrade}<174:2.817+0.009\left|L_{uckGrade}-160\right|,174 \le L_{uckGrade}<175:2.943+0.008\left|L_{uckGrade}-174\right|,175 \le L_{uckGrade}<178:2.951+0.009\left|L_{uckGrade}-175\right|,178 \le L_{uckGrade}<179:2.978+0.008\left|L_{uckGrade}-178\right|,179 \le L_{uckGrade}<181:2.986+0.009\left|L_{uckGrade}-179\right|,181 \le L_{uckGrade}<182:3.004+0.008\left|L_{uckGrade}-181\right|,182 \le L_{uckGrade}<183:3.012+0.009\left|L_{uckGrade}-182\right|,183 \le L_{uckGrade}<184:3.021+0.008\left|L_{uckGrade}-183\right|,184 \le L_{uckGrade}<185:3.029+0.009\left|L_{uckGrade}-184\right|,185 \le L_{uckGrade}<186:3.038+0.008\left|L_{uckGrade}-185\right|,186 \le L_{uckGrade}<187:3.046+0.009\left|L_{uckGrade}-186\right|,187 \le L_{uckGrade}<188:3.055+0.008\left|L_{uckGrade}-187\right|,188 \le L_{uckGrade}<189:3.063+0.009\left|L_{uckGrade}-188\right|,189 \le L_{uckGrade}<190:3.072+0.008\left|L_{uckGrade}-189\right|,190 \le L_{uckGrade}<191:3.08+0.009\left|L_{uckGrade}-190\right|,191 \le L_{uckGrade}<193:3.089+0.008\left|L_{uckGrade}-191\right|,193 \le L_{uckGrade}<194:3.105+0.009\left|L_{uckGrade}-193\right|,194 \le L_{uckGrade}<198:3.114+0.008\left|L_{uckGrade}-194\right|,198 \le L_{uckGrade}<199:3.146+0.009\left|L_{uckGrade}-198\right|,199 \le L_{uckGrade}<209:3.155+0.008\left|L_{uckGrade}-199\right|,209 \le L_{uckGrade}<210:3.235+0.007\left|L_{uckGrade}-209\right|,210 \le L_{uckGrade}<214:3.242+0.008\left|L_{uckGrade}-210\right|,214 \le L_{uckGrade}<215:3.274+0.007\left|L_{uckGrade}-214\right|,215 \le L_{uckGrade}<217:3.281+0.008\left|L_{uckGrade}-215\right|,217 \le L_{uckGrade}<218:3.297+0.007\left|L_{uckGrade}-217\right|,218 \le L_{uckGrade}<220:3.304+0.008\left|L_{uckGrade}-218\right|,220 \le L_{uckGrade}<221:3.32+0.007\left|L_{uckGrade}-220\right|,221 \le L_{uckGrade}<222:3.327+0.008\left|L_{uckGrade}-221\right|,222 \le L_{uckGrade}<223:3.335+0.007\left|L_{uckGrade}-222\right|,223 \le L_{uckGrade}<224:3.342+0.008\left|L_{uckGrade}-223\right|,224 \le L_{uckGrade}<225:3.35+0.007\left|L_{uckGrade}-224\right|,225 \le L_{uckGrade}<226:3.357+0.008\left|L_{uckGrade}-225\right|,226 \le L_{uckGrade}<228:3.365+0.007\left|L_{uckGrade}-226\right|,228 \le L_{uckGrade}<229:3.379+0.008\left|L_{uckGrade}-228\right|,229 \le L_{uckGrade}<231:3.387+0.007\left|L_{uckGrade}-229\right|,231 \le L_{uckGrade}<232:3.401+0.008\left|L_{uckGrade}-231\right|,232 \le L_{uckGrade}<237:3.409+0.007\left|L_{uckGrade}-232\right|,237 \le L_{uckGrade}<238:3.444+0.008\left|L_{uckGrade}-237\right|,238 \le L_{uckGrade}<244:3.452+0.007\left|L_{uckGrade}-238\right|,244 \le L_{uckGrade}<245:3.494+0.006\left|L_{uckGrade}-244\right|,245 \le L_{uckGrade}<250:3.5+0.007\left|L_{uckGrade}-245\right|,250 \le L_{uckGrade}<251:3.535+0.006\left|L_{uckGrade}-250\right|,251 \le L_{uckGrade}<253:3.541+0.007\left|L_{uckGrade}-251\right|,253 \le L_{uckGrade}<254:3.555+0.006\left|L_{uckGrade}-253\right|,254 \le L_{uckGrade}<256:3.561+0.007\left|L_{uckGrade}-254\right|,256 \le L_{uckGrade}<257:3.575+0.006\left|L_{uckGrade}-256\right|,257 \le L_{uckGrade}<258:3.581+0.007\left|L_{uckGrade}-257\right|,258 \le L_{uckGrade}<259:3.588+0.006\left|L_{uckGrade}-258\right|,259 \le L_{uckGrade}<260:3.594+0.007\left|L_{uckGrade}-259\right|,260 \le L_{uckGrade}<261:3.601+0.006\left|L_{uckGrade}-260\right|,261 \le L_{uckGrade}<262:3.607+0.007\left|L_{uckGrade}-261\right|,262 \le L_{uckGrade}<263:3.614+0.006\left|L_{uckGrade}-262\right|,263 \le L_{uckGrade}<264:3.62+0.007\left|L_{uckGrade}-263\right|,264 \le L_{uckGrade}<266:3.627+0.006\left|L_{uckGrade}-264\right|,266 \le L_{uckGrade}<267:3.639+0.007\left|L_{uckGrade}-266\right|,267 \le L_{uckGrade}<270:3.646+0.006\left|L_{uckGrade}-267\right|,270 \le L_{uckGrade}<271:3.664+0.007\left|L_{uckGrade}-270\right|,271 \le L_{uckGrade}<286:3.671+0.006\left|L_{uckGrade}-271\right|,286 \le L_{uckGrade}<287:3.761+0.005\left|L_{uckGrade}-286\right|,287 \le L_{uckGrade}<290:3.766+0.006\left|L_{uckGrade}-287\right|,290 \le L_{uckGrade}<291:3.784+0.005\left|L_{uckGrade}-290\right|,291 \le L_{uckGrade}<292:3.789+0.006\left|L_{uckGrade}-291\right|,292 \le L_{uckGrade}<293:3.795+0.005\left|L_{uckGrade}-292\right|,293 \le L_{uckGrade}<295:3.8+0.006\left|L_{uckGrade}-293\right|,295 \le L_{uckGrade}<296:3.812+0.005\left|L_{uckGrade}-295\right|,296 \le L_{uckGrade}<297:3.817+0.006\left|L_{uckGrade}-296\right|,297 \le L_{uckGrade}<298:3.823+0.005\left|L_{uckGrade}-297\right|,298 \le L_{uckGrade}<299:3.828+0.006\left|L_{uckGrade}-298\right|,299 \le L_{uckGrade}<301:3.834+0.005\left|L_{uckGrade}-299\right|,301 \le L_{uckGrade}<302:3.844+0.006\left|L_{uckGrade}-301\right|,302 \le L_{uckGrade}<304:3.85+0.005\left|L_{uckGrade}-302\right|,304 \le L_{uckGrade}<305:3.86+0.006\left|L_{uckGrade}-304\right|,305 \le L_{uckGrade}<308:3.866+0.005\left|L_{uckGrade}-305\right|,308 \le L_{uckGrade}<309:3.881+0.006\left|L_{uckGrade}-308\right|,309 \le L_{uckGrade}<322:3.887+0.005\left|L_{uckGrade}-309\right|,322 \le L_{uckGrade}<323:3.952+0.004\left|L_{uckGrade}-322\right|,323 \le L_{uckGrade}<326:3.956+0.005\left|L_{uckGrade}-323\right|,326 \le L_{uckGrade}<327:3.971+0.004\left|L_{uckGrade}-326\right|,327 \le L_{uckGrade}<329:3.975+0.005\left|L_{uckGrade}-327\right|,329 \le L_{uckGrade}<330:3.985+0.004\left|L_{uckGrade}-329\right|,330 \le L_{uckGrade}<331:3.989+0.005\left|L_{uckGrade}-330\right|,331 \le L_{uckGrade}<332:3.994+0.004\left|L_{uckGrade}-331\right|,332 \le L_{uckGrade}<334:3.998+0.005\left|L_{uckGrade}-332\right|,334 \le L_{uckGrade}<336:4.008+0.004\left|L_{uckGrade}-334\right|,336 \le L_{uckGrade}<337:4.016+0.005\left|L_{uckGrade}-336\right|,337 \le L_{uckGrade}<338:4.021+0.004\left|L_{uckGrade}-337\right|,338 \le L_{uckGrade}<339:4.025+0.005\left|L_{uckGrade}-338\right|,339 \le L_{uckGrade}<341:4.03+0.004\left|L_{uckGrade}-339\right|,341 \le L_{uckGrade}<342:4.038+0.005\left|L_{uckGrade}-341\right|,342 \le L_{uckGrade}<345:4.043+0.004\left|L_{uckGrade}-342\right|,345 \le L_{uckGrade}<346:4.055+0.005\left|L_{uckGrade}-345\right|,346 \le L_{uckGrade}<358:4.06+0.004\left|L_{uckGrade}-346\right|,358 \le L_{uckGrade}<359:4.108+0.003\left|L_{uckGrade}-358\right|,359 \le L_{uckGrade}<363:4.111+0.004\left|L_{uckGrade}-359\right|,363 \le L_{uckGrade}<364:4.127+0.003\left|L_{uckGrade}-363\right|,364 \le L_{uckGrade}<366:4.13+0.004\left|L_{uckGrade}-364\right|,366 \le L_{uckGrade}<367:4.138+0.003\left|L_{uckGrade}-366\right|,367 \le L_{uckGrade}<368:4.141+0.004\left|L_{uckGrade}-367\right|,368 \le L_{uckGrade}<369:4.145+0.003\left|L_{uckGrade}-368\right|,369 \le L_{uckGrade}<370:4.148+0.004\left|L_{uckGrade}-369\right|,370 \le L_{uckGrade}<371:4.152+0.003\left|L_{uckGrade}-370\right|,371 \le L_{uckGrade}<372:4.155+0.004\left|L_{uckGrade}-371\right|,372 \le L_{uckGrade}<373:4.159+0.003\left|L_{uckGrade}-372\right|,373 \le L_{uckGrade}<374:4.162+0.004\left|L_{uckGrade}-373\right|,374 \le L_{uckGrade}<375:4.166+0.003\left|L_{uckGrade}-374\right|,375 \le L_{uckGrade}<376:4.169+0.004\left|L_{uckGrade}-375\right|,376 \le L_{uckGrade}<379:4.173+0.003\left|L_{uckGrade}-376\right|,379 \le L_{uckGrade}<380:4.182+0.004\left|L_{uckGrade}-379\right|,380 \le L_{uckGrade}<383:4.186+0.003\left|L_{uckGrade}-380\right|,383 \le L_{uckGrade}<384:4.195+0.004\left|L_{uckGrade}-383\right|,384 \le L_{uckGrade}<394:4.199+0.003\left|L_{uckGrade}-384\right|,394 \le L_{uckGrade}<395:4.229+0.002\left|L_{uckGrade}-394\right|,395 \le L_{uckGrade}<399:4.231+0.003\left|L_{uckGrade}-395\right|,399 \le L_{uckGrade}<400:4.243+0.002\left|L_{uckGrade}-399\right|,400 \le L_{uckGrade}<402:4.245+0.003\left|L_{uckGrade}-400\right|,402 \le L_{uckGrade}<403:4.251+0.002\left|L_{uckGrade}-402\right|,403 \le L_{uckGrade}<405:4.253+0.003\left|L_{uckGrade}-403\right|,405 \le L_{uckGrade}<406:4.259+0.002\left|L_{uckGrade}-405\right|,406 \le L_{uckGrade}<407:4.261+0.003\left|L_{uckGrade}-406\right|,407 \le L_{uckGrade}<408:4.264+0.002\left|L_{uckGrade}-407\right|,408 \le L_{uckGrade}<409:4.266+0.003\left|L_{uckGrade}-408\right|,409 \le L_{uckGrade}<410:4.269+0.002\left|L_{uckGrade}-409\right|,410 \le L_{uckGrade}<411:4.271+0.003\left|L_{uckGrade}-410\right|,411 \le L_{uckGrade}<413:4.274+0.002\left|L_{uckGrade}-411\right|,413 \le L_{uckGrade}<414:4.278+0.003\left|L_{uckGrade}-413\right|,414 \le L_{uckGrade}<416:4.281+0.002\left|L_{uckGrade}-414\right|,416 \le L_{uckGrade}<417:4.285+0.003\left|L_{uckGrade}-416\right|,417 \le L_{uckGrade}<421:4.288+0.002\left|L_{uckGrade}-417\right|,421 \le L_{uckGrade}<422:4.296+0.003\left|L_{uckGrade}-421\right|,422 \le L_{uckGrade}<431:4.299+0.002\left|L_{uckGrade}-422\right|,431 \le L_{uckGrade}<432:4.317+0.001\left|L_{uckGrade}-431\right|,432 \le L_{uckGrade}<436:4.318+0.002\left|L_{uckGrade}-432\right|,436 \le L_{uckGrade}<437:4.326+0.001\left|L_{uckGrade}-436\right|,437 \le L_{uckGrade}<439:4.327+0.002\left|L_{uckGrade}-437\right|,439 \le L_{uckGrade}<440:4.331+0.001\left|L_{uckGrade}-439\right|,440 \le L_{uckGrade}<442:4.332+0.002\left|L_{uckGrade}-440\right|,442 \le L_{uckGrade}<443:4.336+0.001\left|L_{uckGrade}-442\right|,443 \le L_{uckGrade}<444:4.337+0.002\left|L_{uckGrade}-443\right|,444 \le L_{uckGrade}<445:4.339+0.001\left|L_{uckGrade}-444\right|,445 \le L_{uckGrade}<446:4.34+0.002\left|L_{uckGrade}-445\right|,446 \le L_{uckGrade}<447:4.342+0.001\left|L_{uckGrade}-446\right|,447 \le L_{uckGrade}<448:4.343+0.002\left|L_{uckGrade}-447\right|,448 \le L_{uckGrade}<450:4.345+0.001\left|L_{uckGrade}-448\right|,450 \le L_{uckGrade}<451:4.347+0.002\left|L_{uckGrade}-450\right|,451 \le L_{uckGrade}<453:4.349+0.001\left|L_{uckGrade}-451\right|,453 \le L_{uckGrade}<454:4.351+0.002\left|L_{uckGrade}-453\right|,454 \le L_{uckGrade}<458:4.353+0.001\left|L_{uckGrade}-454\right|,458 \le L_{uckGrade}<459:4.357+0.002\left|L_{uckGrade}-458\right|,459 \le L_{uckGrade}<467:4.359+0.001\left|L_{uckGrade}-459\right|,467 \le L_{uckGrade}<468:4.367+0\left|L_{uckGrade}-467\right|,468 \le L_{uckGrade}<473:4.367+0.001\left|L_{uckGrade}-468\right|,473 \le L_{uckGrade}<474:4.372+0\left|L_{uckGrade}-473\right|,474 \le L_{uckGrade}<476:4.372+0.001\left|L_{uckGrade}-474\right|,476 \le L_{uckGrade}<477:4.374+0\left|L_{uckGrade}-476\right|,477 \le L_{uckGrade}<479:4.374+0.001\left|L_{uckGrade}-477\right|,479 \le L_{uckGrade}<480:4.376+0\left|L_{uckGrade}-479\right|,480 \le L_{uckGrade}<481:4.376+0.001\left|L_{uckGrade}-480\right|,481 \le L_{uckGrade}<482:4.377+0\left|L_{uckGrade}-481\right|,482 \le L_{uckGrade}<483:4.377+0.001\left|L_{uckGrade}-482\right|,483 \le L_{uckGrade}<484:4.378+0\left|L_{uckGrade}-483\right|,484 \le L_{uckGrade}<485:4.378+0.001\left|L_{uckGrade}-484\right|,485 \le L_{uckGrade}<487:4.379+0\left|L_{uckGrade}-485\right|,487 \le L_{uckGrade}<488:4.379+0.001\left|L_{uckGrade}-487\right|,488 \le L_{uckGrade}<490:4.38+0\left|L_{uckGrade}-488\right|,490 \le L_{uckGrade}<491:4.38+0.001\left|L_{uckGrade}-490\right|,491 \le L_{uckGrade}<496:4.381+0\left|L_{uckGrade}-491\right|,496 \le L_{uckGrade}<497:4.381+0.001\left|L_{uckGrade}-496\right|,497 \le L_{uckGrade}<500:4.382+0\left|L_{uckGrade}-497\right|\right\}</pre> | |||
|luckgrade08=<pre>L_{uckGrade08}(L_{uckGrade})=\left\{0 \le L_{uckGrade}<1:1+0.014\left|L_{uckGrade}-0\right|,1 \le L_{uckGrade}<3:1.014+0.013\left|L_{uckGrade}-1\right|,3 \le L_{uckGrade}<4:1.04+0.014\left|L_{uckGrade}-3\right|,4 \le L_{uckGrade}<5:1.054+0.013\left|L_{uckGrade}-4\right|,5 \le L_{uckGrade}<6:1.067+0.014\left|L_{uckGrade}-5\right|,6 \le L_{uckGrade}<8:1.081+0.013\left|L_{uckGrade}-6\right|,8 \le L_{uckGrade}<9:1.107+0.014\left|L_{uckGrade}-8\right|,9 \le L_{uckGrade}<13:1.121+0.013\left|L_{uckGrade}-9\right|,13 \le L_{uckGrade}<14:1.173+0.014\left|L_{uckGrade}-13\right|,14 \le L_{uckGrade}<24:1.187+0.013\left|L_{uckGrade}-14\right|,24 \le L_{uckGrade}<25:1.317+0.012\left|L_{uckGrade}-24\right|,25 \le L_{uckGrade}<29:1.329+0.013\left|L_{uckGrade}-25\right|,29 \le L_{uckGrade}<30:1.381+0.012\left|L_{uckGrade}-29\right|,30 \le L_{uckGrade}<32:1.393+0.013\left|L_{uckGrade}-30\right|,32 \le L_{uckGrade}<33:1.419+0.012\left|L_{uckGrade}-32\right|,33 \le L_{uckGrade}<34:1.431+0.013\left|L_{uckGrade}-33\right|,34 \le L_{uckGrade}<35:1.444+0.012\left|L_{uckGrade}-34\right|,35 \le L_{uckGrade}<37:1.456+0.013\left|L_{uckGrade}-35\right|,37 \le L_{uckGrade}<39:1.482+0.012\left|L_{uckGrade}-37\right|,39 \le L_{uckGrade}<40:1.506+0.013\left|L_{uckGrade}-39\right|,40 \le L_{uckGrade}<41:1.519+0.012\left|L_{uckGrade}-40\right|,41 \le L_{uckGrade}<42:1.531+0.013\left|L_{uckGrade}-41\right|,42 \le L_{uckGrade}<44:1.544+0.012\left|L_{uckGrade}-42\right|,44 \le L_{uckGrade}<45:1.568+0.013\left|L_{uckGrade}-44\right|,45 \le L_{uckGrade}<47:1.581+0.012\left|L_{uckGrade}-45\right|,47 \le L_{uckGrade}<48:1.605+0.013\left|L_{uckGrade}-47\right|,48 \le L_{uckGrade}<64:1.618+0.012\left|L_{uckGrade}-48\right|,64 \le L_{uckGrade}<65:1.81+0.011\left|L_{uckGrade}-64\right|,65 \le L_{uckGrade}<67:1.821+0.012\left|L_{uckGrade}-65\right|,67 \le L_{uckGrade}<68:1.845+0.011\left|L_{uckGrade}-67\right|,68 \le L_{uckGrade}<70:1.856+0.012\left|L_{uckGrade}-68\right|,70 \le L_{uckGrade}<71:1.88+0.011\left|L_{uckGrade}-70\right|,71 \le L_{uckGrade}<73:1.891+0.012\left|L_{uckGrade}-71\right|,73 \le L_{uckGrade}<74:1.915+0.011\left|L_{uckGrade}-73\right|,74 \le L_{uckGrade}<75:1.926+0.012\left|L_{uckGrade}-74\right|,75 \le L_{uckGrade}<77:1.938+0.011\left|L_{uckGrade}-75\right|,77 \le L_{uckGrade}<78:1.96+0.012\left|L_{uckGrade}-77\right|,78 \le L_{uckGrade}<79:1.972+0.011\left|L_{uckGrade}-78\right|,79 \le L_{uckGrade}<80:1.983+0.012\left|L_{uckGrade}-79\right|,80 \le L_{uckGrade}<82:1.995+0.011\left|L_{uckGrade}-80\right|,82 \le L_{uckGrade}<83:2.017+0.012\left|L_{uckGrade}-82\right|,83 \le L_{uckGrade}<87:2.029+0.011\left|L_{uckGrade}-83\right|,87 \le L_{uckGrade}<88:2.073+0.012\left|L_{uckGrade}-87\right|,88 \le L_{uckGrade}<99:2.085+0.011\left|L_{uckGrade}-88\right|,99 \le L_{uckGrade}<100:2.206+0.01\left|L_{uckGrade}-99\right|,100 \le L_{uckGrade}<103:2.216+0.011\left|L_{uckGrade}-100\right|,103 \le L_{uckGrade}<104:2.249+0.01\left|L_{uckGrade}-103\right|,104 \le L_{uckGrade}<106:2.259+0.011\left|L_{uckGrade}-104\right|,106 \le L_{uckGrade}<107:2.281+0.01\left|L_{uckGrade}-106\right|,107 \le L_{uckGrade}<109:2.291+0.011\left|L_{uckGrade}-107\right|,109 \le L_{uckGrade}<110:2.313+0.01\left|L_{uckGrade}-109\right|,110 \le L_{uckGrade}<111:2.323+0.011\left|L_{uckGrade}-110\right|,111 \le L_{uckGrade}<112:2.334+0.01\left|L_{uckGrade}-111\right|,112 \le L_{uckGrade}<113:2.344+0.011\left|L_{uckGrade}-112\right|,113 \le L_{uckGrade}<114:2.355+0.01\left|L_{uckGrade}-113\right|,114 \le L_{uckGrade}<115:2.365+0.011\left|L_{uckGrade}-114\right|,115 \le L_{uckGrade}<117:2.376+0.01\left|L_{uckGrade}-115\right|,117 \le L_{uckGrade}<118:2.396+0.011\left|L_{uckGrade}-117\right|,118 \le L_{uckGrade}<121:2.407+0.01\left|L_{uckGrade}-118\right|,121 \le L_{uckGrade}<122:2.437+0.011\left|L_{uckGrade}-121\right|,122 \le L_{uckGrade}<127:2.448+0.01\left|L_{uckGrade}-122\right|,127 \le L_{uckGrade}<128:2.498+0.011\left|L_{uckGrade}-127\right|,128 \le L_{uckGrade}<132:2.509+0.01\left|L_{uckGrade}-128\right|,132 \le L_{uckGrade}<133:2.549+0.009\left|L_{uckGrade}-132\right|,133 \le L_{uckGrade}<139:2.558+0.01\left|L_{uckGrade}-133\right|,139 \le L_{uckGrade}<140:2.618+0.009\left|L_{uckGrade}-139\right|,140 \le L_{uckGrade}<142:2.627+0.01\left|L_{uckGrade}-140\right|,142 \le L_{uckGrade}<143:2.647+0.009\left|L_{uckGrade}-142\right|,143 \le L_{uckGrade}<145:2.656+0.01\left|L_{uckGrade}-143\right|,145 \le L_{uckGrade}<146:2.676+0.009\left|L_{uckGrade}-145\right|,146 \le L_{uckGrade}<147:2.685+0.01\left|L_{uckGrade}-146\right|,147 \le L_{uckGrade}<148:2.695+0.009\left|L_{uckGrade}-147\right|,148 \le L_{uckGrade}<149:2.704+0.01\left|L_{uckGrade}-148\right|,149 \le L_{uckGrade}<150:2.714+0.009\left|L_{uckGrade}-149\right|,150 \le L_{uckGrade}<151:2.723+0.01\left|L_{uckGrade}-150\right|,151 \le L_{uckGrade}<152:2.733+0.009\left|L_{uckGrade}-151\right|,152 \le L_{uckGrade}<153:2.742+0.01\left|L_{uckGrade}-152\right|,153 \le L_{uckGrade}<155:2.752+0.009\left|L_{uckGrade}-153\right|,155 \le L_{uckGrade}<156:2.77+0.01\left|L_{uckGrade}-155\right|,156 \le L_{uckGrade}<159:2.78+0.009\left|L_{uckGrade}-156\right|,159 \le L_{uckGrade}<160:2.807+0.01\left|L_{uckGrade}-159\right|,160 \le L_{uckGrade}<174:2.817+0.009\left|L_{uckGrade}-160\right|,174 \le L_{uckGrade}<175:2.943+0.008\left|L_{uckGrade}-174\right|,175 \le L_{uckGrade}<178:2.951+0.009\left|L_{uckGrade}-175\right|,178 \le L_{uckGrade}<179:2.978+0.008\left|L_{uckGrade}-178\right|,179 \le L_{uckGrade}<181:2.986+0.009\left|L_{uckGrade}-179\right|,181 \le L_{uckGrade}<182:3.004+0.008\left|L_{uckGrade}-181\right|,182 \le L_{uckGrade}<183:3.012+0.009\left|L_{uckGrade}-182\right|,183 \le L_{uckGrade}<184:3.021+0.008\left|L_{uckGrade}-183\right|,184 \le L_{uckGrade}<185:3.029+0.009\left|L_{uckGrade}-184\right|,185 \le L_{uckGrade}<186:3.038+0.008\left|L_{uckGrade}-185\right|,186 \le L_{uckGrade}<187:3.046+0.009\left|L_{uckGrade}-186\right|,187 \le L_{uckGrade}<188:3.055+0.008\left|L_{uckGrade}-187\right|,188 \le L_{uckGrade}<189:3.063+0.009\left|L_{uckGrade}-188\right|,189 \le L_{uckGrade}<190:3.072+0.008\left|L_{uckGrade}-189\right|,190 \le L_{uckGrade}<191:3.08+0.009\left|L_{uckGrade}-190\right|,191 \le L_{uckGrade}<193:3.089+0.008\left|L_{uckGrade}-191\right|,193 \le L_{uckGrade}<194:3.105+0.009\left|L_{uckGrade}-193\right|,194 \le L_{uckGrade}<198:3.114+0.008\left|L_{uckGrade}-194\right|,198 \le L_{uckGrade}<199:3.146+0.009\left|L_{uckGrade}-198\right|,199 \le L_{uckGrade}<209:3.155+0.008\left|L_{uckGrade}-199\right|,209 \le L_{uckGrade}<210:3.235+0.007\left|L_{uckGrade}-209\right|,210 \le L_{uckGrade}<214:3.242+0.008\left|L_{uckGrade}-210\right|,214 \le L_{uckGrade}<215:3.274+0.007\left|L_{uckGrade}-214\right|,215 \le L_{uckGrade}<217:3.281+0.008\left|L_{uckGrade}-215\right|,217 \le L_{uckGrade}<218:3.297+0.007\left|L_{uckGrade}-217\right|,218 \le L_{uckGrade}<220:3.304+0.008\left|L_{uckGrade}-218\right|,220 \le L_{uckGrade}<221:3.32+0.007\left|L_{uckGrade}-220\right|,221 \le L_{uckGrade}<222:3.327+0.008\left|L_{uckGrade}-221\right|,222 \le L_{uckGrade}<223:3.335+0.007\left|L_{uckGrade}-222\right|,223 \le L_{uckGrade}<224:3.342+0.008\left|L_{uckGrade}-223\right|,224 \le L_{uckGrade}<225:3.35+0.007\left|L_{uckGrade}-224\right|,225 \le L_{uckGrade}<226:3.357+0.008\left|L_{uckGrade}-225\right|,226 \le L_{uckGrade}<228:3.365+0.007\left|L_{uckGrade}-226\right|,228 \le L_{uckGrade}<229:3.379+0.008\left|L_{uckGrade}-228\right|,229 \le L_{uckGrade}<231:3.387+0.007\left|L_{uckGrade}-229\right|,231 \le L_{uckGrade}<232:3.401+0.008\left|L_{uckGrade}-231\right|,232 \le L_{uckGrade}<237:3.409+0.007\left|L_{uckGrade}-232\right|,237 \le L_{uckGrade}<238:3.444+0.008\left|L_{uckGrade}-237\right|,238 \le L_{uckGrade}<244:3.452+0.007\left|L_{uckGrade}-238\right|,244 \le L_{uckGrade}<245:3.494+0.006\left|L_{uckGrade}-244\right|,245 \le L_{uckGrade}<250:3.5+0.007\left|L_{uckGrade}-245\right|,250 \le L_{uckGrade}<251:3.535+0.006\left|L_{uckGrade}-250\right|,251 \le L_{uckGrade}<253:3.541+0.007\left|L_{uckGrade}-251\right|,253 \le L_{uckGrade}<254:3.555+0.006\left|L_{uckGrade}-253\right|,254 \le L_{uckGrade}<256:3.561+0.007\left|L_{uckGrade}-254\right|,256 \le L_{uckGrade}<257:3.575+0.006\left|L_{uckGrade}-256\right|,257 \le L_{uckGrade}<258:3.581+0.007\left|L_{uckGrade}-257\right|,258 \le L_{uckGrade}<259:3.588+0.006\left|L_{uckGrade}-258\right|,259 \le L_{uckGrade}<260:3.594+0.007\left|L_{uckGrade}-259\right|,260 \le L_{uckGrade}<261:3.601+0.006\left|L_{uckGrade}-260\right|,261 \le L_{uckGrade}<262:3.607+0.007\left|L_{uckGrade}-261\right|,262 \le L_{uckGrade}<263:3.614+0.006\left|L_{uckGrade}-262\right|,263 \le L_{uckGrade}<264:3.62+0.007\left|L_{uckGrade}-263\right|,264 \le L_{uckGrade}<266:3.627+0.006\left|L_{uckGrade}-264\right|,266 \le L_{uckGrade}<267:3.639+0.007\left|L_{uckGrade}-266\right|,267 \le L_{uckGrade}<270:3.646+0.006\left|L_{uckGrade}-267\right|,270 \le L_{uckGrade}<271:3.664+0.007\left|L_{uckGrade}-270\right|,271 \le L_{uckGrade}<286:3.671+0.006\left|L_{uckGrade}-271\right|,286 \le L_{uckGrade}<287:3.761+0.005\left|L_{uckGrade}-286\right|,287 \le L_{uckGrade}<290:3.766+0.006\left|L_{uckGrade}-287\right|,290 \le L_{uckGrade}<291:3.784+0.005\left|L_{uckGrade}-290\right|,291 \le L_{uckGrade}<292:3.789+0.006\left|L_{uckGrade}-291\right|,292 \le L_{uckGrade}<293:3.795+0.005\left|L_{uckGrade}-292\right|,293 \le L_{uckGrade}<295:3.8+0.006\left|L_{uckGrade}-293\right|,295 \le L_{uckGrade}<296:3.812+0.005\left|L_{uckGrade}-295\right|,296 \le L_{uckGrade}<297:3.817+0.006\left|L_{uckGrade}-296\right|,297 \le L_{uckGrade}<298:3.823+0.005\left|L_{uckGrade}-297\right|,298 \le L_{uckGrade}<299:3.828+0.006\left|L_{uckGrade}-298\right|,299 \le L_{uckGrade}<301:3.834+0.005\left|L_{uckGrade}-299\right|,301 \le L_{uckGrade}<302:3.844+0.006\left|L_{uckGrade}-301\right|,302 \le L_{uckGrade}<304:3.85+0.005\left|L_{uckGrade}-302\right|,304 \le L_{uckGrade}<305:3.86+0.006\left|L_{uckGrade}-304\right|,305 \le L_{uckGrade}<308:3.866+0.005\left|L_{uckGrade}-305\right|,308 \le L_{uckGrade}<309:3.881+0.006\left|L_{uckGrade}-308\right|,309 \le L_{uckGrade}<322:3.887+0.005\left|L_{uckGrade}-309\right|,322 \le L_{uckGrade}<323:3.952+0.004\left|L_{uckGrade}-322\right|,323 \le L_{uckGrade}<326:3.956+0.005\left|L_{uckGrade}-323\right|,326 \le L_{uckGrade}<327:3.971+0.004\left|L_{uckGrade}-326\right|,327 \le L_{uckGrade}<329:3.975+0.005\left|L_{uckGrade}-327\right|,329 \le L_{uckGrade}<330:3.985+0.004\left|L_{uckGrade}-329\right|,330 \le L_{uckGrade}<331:3.989+0.005\left|L_{uckGrade}-330\right|,331 \le L_{uckGrade}<332:3.994+0.004\left|L_{uckGrade}-331\right|,332 \le L_{uckGrade}<334:3.998+0.005\left|L_{uckGrade}-332\right|,334 \le L_{uckGrade}<336:4.008+0.004\left|L_{uckGrade}-334\right|,336 \le L_{uckGrade}<337:4.016+0.005\left|L_{uckGrade}-336\right|,337 \le L_{uckGrade}<338:4.021+0.004\left|L_{uckGrade}-337\right|,338 \le L_{uckGrade}<339:4.025+0.005\left|L_{uckGrade}-338\right|,339 \le L_{uckGrade}<341:4.03+0.004\left|L_{uckGrade}-339\right|,341 \le L_{uckGrade}<342:4.038+0.005\left|L_{uckGrade}-341\right|,342 \le L_{uckGrade}<345:4.043+0.004\left|L_{uckGrade}-342\right|,345 \le L_{uckGrade}<346:4.055+0.005\left|L_{uckGrade}-345\right|,346 \le L_{uckGrade}<358:4.06+0.004\left|L_{uckGrade}-346\right|,358 \le L_{uckGrade}<359:4.108+0.003\left|L_{uckGrade}-358\right|,359 \le L_{uckGrade}<363:4.111+0.004\left|L_{uckGrade}-359\right|,363 \le L_{uckGrade}<364:4.127+0.003\left|L_{uckGrade}-363\right|,364 \le L_{uckGrade}<366:4.13+0.004\left|L_{uckGrade}-364\right|,366 \le L_{uckGrade}<367:4.138+0.003\left|L_{uckGrade}-366\right|,367 \le L_{uckGrade}<368:4.141+0.004\left|L_{uckGrade}-367\right|,368 \le L_{uckGrade}<369:4.145+0.003\left|L_{uckGrade}-368\right|,369 \le L_{uckGrade}<370:4.148+0.004\left|L_{uckGrade}-369\right|,370 \le L_{uckGrade}<371:4.152+0.003\left|L_{uckGrade}-370\right|,371 \le L_{uckGrade}<372:4.155+0.004\left|L_{uckGrade}-371\right|,372 \le L_{uckGrade}<373:4.159+0.003\left|L_{uckGrade}-372\right|,373 \le L_{uckGrade}<374:4.162+0.004\left|L_{uckGrade}-373\right|,374 \le L_{uckGrade}<375:4.166+0.003\left|L_{uckGrade}-374\right|,375 \le L_{uckGrade}<376:4.169+0.004\left|L_{uckGrade}-375\right|,376 \le L_{uckGrade}<379:4.173+0.003\left|L_{uckGrade}-376\right|,379 \le L_{uckGrade}<380:4.182+0.004\left|L_{uckGrade}-379\right|,380 \le L_{uckGrade}<383:4.186+0.003\left|L_{uckGrade}-380\right|,383 \le L_{uckGrade}<384:4.195+0.004\left|L_{uckGrade}-383\right|,384 \le L_{uckGrade}<394:4.199+0.003\left|L_{uckGrade}-384\right|,394 \le L_{uckGrade}<395:4.229+0.002\left|L_{uckGrade}-394\right|,395 \le L_{uckGrade}<399:4.231+0.003\left|L_{uckGrade}-395\right|,399 \le L_{uckGrade}<400:4.243+0.002\left|L_{uckGrade}-399\right|,400 \le L_{uckGrade}<402:4.245+0.003\left|L_{uckGrade}-400\right|,402 \le L_{uckGrade}<403:4.251+0.002\left|L_{uckGrade}-402\right|,403 \le L_{uckGrade}<405:4.253+0.003\left|L_{uckGrade}-403\right|,405 \le L_{uckGrade}<406:4.259+0.002\left|L_{uckGrade}-405\right|,406 \le L_{uckGrade}<407:4.261+0.003\left|L_{uckGrade}-406\right|,407 \le L_{uckGrade}<408:4.264+0.002\left|L_{uckGrade}-407\right|,408 \le L_{uckGrade}<409:4.266+0.003\left|L_{uckGrade}-408\right|,409 \le L_{uckGrade}<410:4.269+0.002\left|L_{uckGrade}-409\right|,410 \le L_{uckGrade}<411:4.271+0.003\left|L_{uckGrade}-410\right|,411 \le L_{uckGrade}<413:4.274+0.002\left|L_{uckGrade}-411\right|,413 \le L_{uckGrade}<414:4.278+0.003\left|L_{uckGrade}-413\right|,414 \le L_{uckGrade}<416:4.281+0.002\left|L_{uckGrade}-414\right|,416 \le L_{uckGrade}<417:4.285+0.003\left|L_{uckGrade}-416\right|,417 \le L_{uckGrade}<421:4.288+0.002\left|L_{uckGrade}-417\right|,421 \le L_{uckGrade}<422:4.296+0.003\left|L_{uckGrade}-421\right|,422 \le L_{uckGrade}<431:4.299+0.002\left|L_{uckGrade}-422\right|,431 \le L_{uckGrade}<432:4.317+0.001\left|L_{uckGrade}-431\right|,432 \le L_{uckGrade}<436:4.318+0.002\left|L_{uckGrade}-432\right|,436 \le L_{uckGrade}<437:4.326+0.001\left|L_{uckGrade}-436\right|,437 \le L_{uckGrade}<439:4.327+0.002\left|L_{uckGrade}-437\right|,439 \le L_{uckGrade}<440:4.331+0.001\left|L_{uckGrade}-439\right|,440 \le L_{uckGrade}<442:4.332+0.002\left|L_{uckGrade}-440\right|,442 \le L_{uckGrade}<443:4.336+0.001\left|L_{uckGrade}-442\right|,443 \le L_{uckGrade}<444:4.337+0.002\left|L_{uckGrade}-443\right|,444 \le L_{uckGrade}<445:4.339+0.001\left|L_{uckGrade}-444\right|,445 \le L_{uckGrade}<446:4.34+0.002\left|L_{uckGrade}-445\right|,446 \le L_{uckGrade}<447:4.342+0.001\left|L_{uckGrade}-446\right|,447 \le L_{uckGrade}<448:4.343+0.002\left|L_{uckGrade}-447\right|,448 \le L_{uckGrade}<450:4.345+0.001\left|L_{uckGrade}-448\right|,450 \le L_{uckGrade}<451:4.347+0.002\left|L_{uckGrade}-450\right|,451 \le L_{uckGrade}<453:4.349+0.001\left|L_{uckGrade}-451\right|,453 \le L_{uckGrade}<454:4.351+0.002\left|L_{uckGrade}-453\right|,454 \le L_{uckGrade}<458:4.353+0.001\left|L_{uckGrade}-454\right|,458 \le L_{uckGrade}<459:4.357+0.002\left|L_{uckGrade}-458\right|,459 \le L_{uckGrade}<467:4.359+0.001\left|L_{uckGrade}-459\right|,467 \le L_{uckGrade}<468:4.367+0\left|L_{uckGrade}-467\right|,468 \le L_{uckGrade}<473:4.367+0.001\left|L_{uckGrade}-468\right|,473 \le L_{uckGrade}<474:4.372+0\left|L_{uckGrade}-473\right|,474 \le L_{uckGrade}<476:4.372+0.001\left|L_{uckGrade}-474\right|,476 \le L_{uckGrade}<477:4.374+0\left|L_{uckGrade}-476\right|,477 \le L_{uckGrade}<479:4.374+0.001\left|L_{uckGrade}-477\right|,479 \le L_{uckGrade}<480:4.376+0\left|L_{uckGrade}-479\right|,480 \le L_{uckGrade}<481:4.376+0.001\left|L_{uckGrade}-480\right|,481 \le L_{uckGrade}<482:4.377+0\left|L_{uckGrade}-481\right|,482 \le L_{uckGrade}<483:4.377+0.001\left|L_{uckGrade}-482\right|,483 \le L_{uckGrade}<484:4.378+0\left|L_{uckGrade}-483\right|,484 \le L_{uckGrade}<485:4.378+0.001\left|L_{uckGrade}-484\right|,485 \le L_{uckGrade}<487:4.379+0\left|L_{uckGrade}-485\right|,487 \le L_{uckGrade}<488:4.379+0.001\left|L_{uckGrade}-487\right|,488 \le L_{uckGrade}<490:4.38+0\left|L_{uckGrade}-488\right|,490 \le L_{uckGrade}<491:4.38+0.001\left|L_{uckGrade}-490\right|,491 \le L_{uckGrade}<496:4.381+0\left|L_{uckGrade}-491\right|,496 \le L_{uckGrade}<497:4.381+0.001\left|L_{uckGrade}-496\right|,497 \le L_{uckGrade}<500:4.382+0\left|L_{uckGrade}-497\right|\right\}</pre> | |||
|magicaldamagereduction=<pre>M_{agicalDamageReduction}(M_{agicResistance})=\left\{-300 \le M_{agicResistance}<-15:-5.95+0.02\left|M_{agicResistance}--300\right|,-15 \le M_{agicResistance}<10:-0.25+0.01\left|M_{agicResistance}--15\right|,10 \le M_{agicResistance}<250:0+0.003\left|M_{agicResistance}-10\right|,250 \le M_{agicResistance}<350:0.6+0.002\left|M_{agicResistance}-250\right|,350 \le M_{agicResistance}<500:0.8+0.001\left|M_{agicResistance}-350\right|\right\}</pre> | |||
|magicalinteractionspeed=<pre>M_{agicalInteractionSpeed}(W_{ill})=\left\{0 \le W_{ill}<15:-0.75+0.05\left|W_{ill}-0\right|,15 \le W_{ill}<25:0+0.07\left|W_{ill}-15\right|,25 \le W_{ill}<35:0.7+0.05\left|W_{ill}-25\right|,35 \le W_{ill}<84:1.2+0.02\left|W_{ill}-35\right|,84 \le W_{ill}<85:2.18+0.01\left|W_{ill}-84\right|,85 \le W_{ill}<86:2.19+0.03\left|W_{ill}-85\right|,86 \le W_{ill}<100:2.22+0.02\left|W_{ill}-86\right|\right\}</pre> | |||
|magicalpower=<pre>M_{agicalPower}(W_{ill})=\left\{0 \le W_{ill}<100:0+1\left|W_{ill}-0\right|\right\}</pre> | |||
|magicalpowerbonus=<pre>M_{agicalPowerBonus}(M_{agicalPower})=\left\{0 \le M_{agicalPower}<1:-0.9+0\left|M_{agicalPower}-0\right|,1 \le M_{agicalPower}<5:-0.9+0.1\left|M_{agicalPower}-1\right|,5 \le M_{agicalPower}<15:-0.5+0.05\left|M_{agicalPower}-5\right|,15 \le M_{agicalPower}<21:0+0.025\left|M_{agicalPower}-15\right|,21 \le M_{agicalPower}<40:0.15+0.02\left|M_{agicalPower}-21\right|,40 \le M_{agicalPower}<50:0.53+0.01\left|M_{agicalPower}-40\right|,50 \le M_{agicalPower}<100:0.63+0.005\left|M_{agicalPower}-50\right|\right\}</pre> | |||
|magicresistance=<pre>M_{agicResistance}(W_{ill})=\left\{0 \le W_{ill}<5:-20+4\left|W_{ill}-0\right|,5 \le W_{ill}<15:0+3\left|W_{ill}-5\right|,15 \le W_{ill}<33:30+4\left|W_{ill}-15\right|,33 \le W_{ill}<48:102+3\left|W_{ill}-33\right|,48 \le W_{ill}<58:147+2\left|W_{ill}-48\right|,58 \le W_{ill}<100:167+1\left|W_{ill}-58\right|\right\}</pre> | |||
|manualdexterity=<pre>M_{anualDexterity}(D_{exterity})=\left\{0 \le D_{exterity}<15:-0.15+0.01\left|D_{exterity}-0\right|,15 \le D_{exterity}<23:0+0.03\left|D_{exterity}-15\right|,23 \le D_{exterity}<31:0.24+0.02\left|D_{exterity}-23\right|,31 \le D_{exterity}<37:0.4+0.01\left|D_{exterity}-31\right|,37 \le D_{exterity}<45:0.46+0.005\left|D_{exterity}-37\right|,45 \le D_{exterity}<95:0.5+0.001\left|D_{exterity}-45\right|,95 \le D_{exterity}<100:0.55+0\left|D_{exterity}-95\right|\right\}</pre> | |||
|memorycapacity=<pre>M_{emoryCapacity}(K_{nowledge})=\left\{0 \le K_{nowledge}<6:0+0\left|K_{nowledge}-0\right|,6 \le K_{nowledge}<100:0+1\left|K_{nowledge}-6\right|\right\}</pre> | |||
|memoryrecovery=<pre>M_{emoryRecovery}(K_{nowledge})=\left\{0 \le K_{nowledge}<28:0.43+0.015\left|K_{nowledge}-0\right|,28 \le K_{nowledge}<35:0.85+0.05\left|K_{nowledge}-28\right|,35 \le K_{nowledge}<84:1.2+0.02\left|K_{nowledge}-35\right|,84 \le K_{nowledge}<85:2.18+0.01\left|K_{nowledge}-84\right|,85 \le K_{nowledge}<86:2.19+0.03\left|K_{nowledge}-85\right|,86 \le K_{nowledge}<100:2.22+0.02\left|K_{nowledge}-86\right|\right\}</pre> | |||
|movespeed=<pre>M_{oveSpeed}(A_{gility})=\left\{0 \le A_{gility}<10:-10+0.5\left|A_{gility}-0\right|,10 \le A_{gility}<15:-5+1\left|A_{gility}-10\right|,15 \le A_{gility}<75:0+0.75\left|A_{gility}-15\right|,75 \le A_{gility}<100:45+0.5\left|A_{gility}-75\right|\right\}</pre> | |||
|persuasiveness=<pre>P_{ersuasiveness}(R_{esourcefulness})=\left\{0 \le R_{esourcefulness}<35:0+1\left|R_{esourcefulness}-0\right|,35 \le R_{esourcefulness}<71:35+0.5\left|R_{esourcefulness}-35\right|,71 \le R_{esourcefulness}<99:53+0.25\left|R_{esourcefulness}-71\right|,99 \le R_{esourcefulness}<100:60+0\left|R_{esourcefulness}-99\right|\right\}</pre> | |||
|physicaldamagereduction=<pre>P_{hysicalDamageReduction}(A_{rmorRating})=\left\{-300 \le A_{rmorRating}<-3:-6.19+0.02\left|A_{rmorRating}--300\right|,-3 \le A_{rmorRating}<22:-0.25+0.01\left|A_{rmorRating}--3\right|,22 \le A_{rmorRating}<31:0+0.005\left|A_{rmorRating}-22\right|,31 \le A_{rmorRating}<42:0.045+0.004\left|A_{rmorRating}-31\right|,42 \le A_{rmorRating}<52:0.089+0.003\left|A_{rmorRating}-42\right|,52 \le A_{rmorRating}<62:0.119+0.002\left|A_{rmorRating}-52\right|,62 \le A_{rmorRating}<112:0.139+0.001\left|A_{rmorRating}-62\right|,112 \le A_{rmorRating}<175:0.189+0.002\left|A_{rmorRating}-112\right|,175 \le A_{rmorRating}<230:0.315+0.003\left|A_{rmorRating}-175\right|,230 \le A_{rmorRating}<317:0.453+0.002\left|A_{rmorRating}-230\right|,317 \le A_{rmorRating}<353:0.626+0.001\left|A_{rmorRating}-317\right|,353 \le A_{rmorRating}<368:0.662+0.001\left|A_{rmorRating}-353\right|,368 \le A_{rmorRating}<369:0.67+0\left|A_{rmorRating}-368\right|,369 \le A_{rmorRating}<370:0.67+0.001\left|A_{rmorRating}-369\right|,370 \le A_{rmorRating}<428:0.671+0\left|A_{rmorRating}-370\right|,428 \le A_{rmorRating}<429:0.7+-0.001\left|A_{rmorRating}-428\right|,429 \le A_{rmorRating}<450:0.699+0\left|A_{rmorRating}-429\right|,450 \le A_{rmorRating}<500:0.705+0\left|A_{rmorRating}-450\right|\right\}</pre> | |||
|physicalpower=<pre>P_{hysicalPower}(S_{trength})=\left\{0 \le S_{trength}<100:0+1\left|S_{trength}-0\right|\right\}</pre> | |||
|physicalpowerbonus=<pre>P_{hysicalPowerBonus}(P_{hysicalPower})=\left\{0 \le P_{hysicalPower}<5:-0.8+0.1\left|P_{hysicalPower}-0\right|,5 \le P_{hysicalPower}<7:-0.3+0.05\left|P_{hysicalPower}-5\right|,7 \le P_{hysicalPower}<11:-0.2+0.03\left|P_{hysicalPower}-7\right|,11 \le P_{hysicalPower}<15:-0.08+0.02\left|P_{hysicalPower}-11\right|,15 \le P_{hysicalPower}<50:0+0.01\left|P_{hysicalPower}-15\right|,50 \le P_{hysicalPower}<100:0.35+0.005\left|P_{hysicalPower}-50\right|\right\}</pre> | |||
|regularinteractionspeed=<pre>R_{egularInteractionSpeed}(S_{um})=\left\{0 \le S_{um}<7:-0.26+0.02\left|S_{um}-0\right|,7 \le S_{um}<15:-0.12+0.015\left|S_{um}-7\right|,15 \le S_{um}<20:0+0.07\left|S_{um}-15\right|,20 \le S_{um}<25:0.35+0.06\left|S_{um}-20\right|,25 \le S_{um}<30:0.65+0.05\left|S_{um}-25\right|,30 \le S_{um}<35:0.9+0.04\left|S_{um}-30\right|,35 \le S_{um}<40:1.1+0.03\left|S_{um}-35\right|,40 \le S_{um}<45:1.25+0.02\left|S_{um}-40\right|,45 \le S_{um}<100:1.35+0.01\left|S_{um}-45\right|\right\}</pre> | |||
|spellcastingspeed=<pre>S_{pellCastingSpeed}(K_{nowledge})=\left\{0 \le K_{nowledge}<5:-0.6+0.05\left|K_{nowledge}-0\right|,5 \le K_{nowledge}<10:-0.35+0.04\left|K_{nowledge}-5\right|,10 \le K_{nowledge}<20:-0.15+0.03\left|K_{nowledge}-10\right|,20 \le K_{nowledge}<50:0.15+0.025\left|K_{nowledge}-20\right|,50 \le K_{nowledge}<80:0.9+0.02\left|K_{nowledge}-50\right|,80 \le K_{nowledge}<100:1.5+0.015\left|K_{nowledge}-80\right|\right\}</pre> | |||
|#default=Could not find stat in Template:Stats_Data}} | |||
See [https://www.desmos.com/calculator/4olg3n8xol Example] for how to use. | |||
</div> | |||
</div> | |||
</includeonly><noinclude>==Example== | |||
<pre>{{Stats_Data|actionspeed}}</pre> | |||
{{Stats_Data|actionspeed}} | |||
</noinclude> |
Latest revision as of 02:35, 2 November 2024
Example
{{Stats_Data|actionspeed}}
Agility and Dexterity governs your Action Speed.
Agility gives 0.25 Action Speed Rating, and Dexterity gives 0.75 Action Speed Rating, which then get summed into a total Action Speed Rating and finally converted into Action Speed using the graph.
Action Speed Rating = Agility * 0.25 + Dexterity * 0.75
0 Action Speed Rating starts at -38% Action Speed.
- 0 -> -38%
- 0 to 10 = 3% each, up to -8%
- 10 to 13 = 2% each, up to -2%
- 13 to 25 = 1% each, up to 10%
- 25 to 41 = 1.5% each, up to 34%
- 41 to 50 = 1% each, up to 43%
- 50 to 100 = 0.5% each, up to 68%
LaTeX Formula
Can be pasted into Desmos or other LaTeX editors for quick use of the equation.
Triple click to select all. Note: Some browsers will add an extra return carriage (line end) after the formula. Remove it before pasting for best results.
A_{ctionSpeed}(S_{um})=\left\{0 \le S_{um}<10:-0.38+0.03\left|S_{um}-0\right|,10 \le S_{um}<13:-0.08+0.02\left|S_{um}-10\right|,13 \le S_{um}<25:-0.02+0.01\left|S_{um}-13\right|,25 \le S_{um}<41:0.1+0.015\left|S_{um}-25\right|,41 \le S_{um}<50:0.34+0.01\left|S_{um}-41\right|,50 \le S_{um}<100:0.43+0.005\left|S_{um}-50\right|\right\}
See Example for how to use.