From Dark and Darker Wiki

No edit summary
Tag: Reverted
m (Automated edit: HF72)
 
(13 intermediate revisions by 5 users not shown)
Line 1: Line 1:
<includeonly><div style="display:flex;flex-wrap:wrap;">
<includeonly><div style="display:flex;flex-wrap:wrap;">
<div style="width:500px;">
<div style="width:500px;>
{{#switch:{{lc:{{{1|}}}}}
{{#switch:{{lc:{{{1|}}}}}
|actionspeed=Agility and Dexterity governs your Action Speed.
|actionspeed=Agility and Dexterity governs your Action Speed.


Agility has 25% scaling, and Dexterity has 75% scaling, which then get combined into a Sum and translated into ActionSpeed.
Agility gives 0.25 Action Speed Rating, and Dexterity gives 0.75 Action Speed Rating, which then get summed into a total Action Speed Rating and finally converted into Action Speed using the graph.


<code> Sum = Agility * 0.25 + Dexterity * 0.75</code>
<code> Action Speed Rating = Agility * 0.25 + Dexterity * 0.75</code>




0 Sum starts at -38% Action Speed.
0 Action Speed Rating starts at -38% Action Speed.
*0 -> -38%
*0 -> -38%
*0 to 10 = 3% each, up to -8%
*0 to 10 = 3% each, up to -8%
Line 19: Line 19:


{{#widget:Chart|uniqueId=ActionSpeed|data=[{"x": 0,"y": -0.38},{"x": 10,"y": -0.08},{"x": 13,"y": -0.02},{"x": 25,"y": 0.1},{"x": 41,"y": 0.34},{"x": 50,"y": 0.43},{"x": 100,"y": 0.68}]|color=orange}}
{{#widget:Chart|uniqueId=ActionSpeed|data=[{"x": 0,"y": -0.38},{"x": 10,"y": -0.08},{"x": 13,"y": -0.02},{"x": 25,"y": 0.1},{"x": 41,"y": 0.34},{"x": 50,"y": 0.43},{"x": 100,"y": 0.68}]|color=orange}}
|basehealth=Strength and Vigor governs your Base Health.
Strength gives 0.25 Base Health Rating, and Vigor gives 0.75 Base Health Rating, which then get summed into a total Base Health Rating and finally converted into Base Health using the graph.
<code> Base Health Rating = Strength * 0.25 + Vigor * 0.75</code>
0 Base Health Rating starts at 60 Base Health.
*0 -> 60
*0 to 10 = 3 each, up to 90
*10 to 50 = 2 each, up to 170
*50 to 75 = 1 each, up to 195
*75 to 100 = 0.5 each, up to 207.5
{{#widget:Chart|uniqueId=BaseHealth|data=[{"x": 0,"y": 60},{"x": 10,"y": 90},{"x": 50,"y": 170},{"x": 75,"y": 195},{"x": 100,"y": 207.5}]|color=orange}}
|buffduration=Will governs your Buff Duration.
|buffduration=Will governs your Buff Duration.


Line 140: Line 155:
|luckgrade06={{#widget:Chart|uniqueId=LuckGrade06|data=[{"x": 0,"y": 1},{"x": 6,"y": 1.078},{"x": 7,"y": 1.09},{"x": 11,"y": 1.142},{"x": 12,"y": 1.154},{"x": 14,"y": 1.18},{"x": 15,"y": 1.192},{"x": 16,"y": 1.205},{"x": 17,"y": 1.217},{"x": 19,"y": 1.243},{"x": 20,"y": 1.255},{"x": 21,"y": 1.268},{"x": 23,"y": 1.292},{"x": 24,"y": 1.305},{"x": 25,"y": 1.317},{"x": 26,"y": 1.33},{"x": 29,"y": 1.366},{"x": 30,"y": 1.379},{"x": 34,"y": 1.427},{"x": 35,"y": 1.44},{"x": 43,"y": 1.536},{"x": 44,"y": 1.547},{"x": 48,"y": 1.595},{"x": 49,"y": 1.606},{"x": 52,"y": 1.642},{"x": 53,"y": 1.653},{"x": 54,"y": 1.665},{"x": 55,"y": 1.676},{"x": 57,"y": 1.7},{"x": 58,"y": 1.711},{"x": 59,"y": 1.723},{"x": 61,"y": 1.745},{"x": 62,"y": 1.757},{"x": 63,"y": 1.768},{"x": 64,"y": 1.78},{"x": 66,"y": 1.802},{"x": 67,"y": 1.814},{"x": 71,"y": 1.858},{"x": 72,"y": 1.87},{"x": 83,"y": 1.991},{"x": 84,"y": 2.001},{"x": 87,"y": 2.034},{"x": 88,"y": 2.044},{"x": 91,"y": 2.077},{"x": 92,"y": 2.087},{"x": 93,"y": 2.098},{"x": 94,"y": 2.108},{"x": 95,"y": 2.119},{"x": 96,"y": 2.129},{"x": 97,"y": 2.14},{"x": 98,"y": 2.15},{"x": 99,"y": 2.161},{"x": 100,"y": 2.171},{"x": 101,"y": 2.182},{"x": 103,"y": 2.202},{"x": 104,"y": 2.213},{"x": 106,"y": 2.233},{"x": 107,"y": 2.244},{"x": 113,"y": 2.304},{"x": 114,"y": 2.315},{"x": 118,"y": 2.355},{"x": 119,"y": 2.364},{"x": 125,"y": 2.424},{"x": 126,"y": 2.433},{"x": 128,"y": 2.453},{"x": 129,"y": 2.462},{"x": 131,"y": 2.482},{"x": 132,"y": 2.491},{"x": 133,"y": 2.501},{"x": 134,"y": 2.51},{"x": 135,"y": 2.52},{"x": 136,"y": 2.529},{"x": 137,"y": 2.539},{"x": 138,"y": 2.548},{"x": 139,"y": 2.558},{"x": 141,"y": 2.576},{"x": 142,"y": 2.586},{"x": 144,"y": 2.604},{"x": 145,"y": 2.614},{"x": 150,"y": 2.659},{"x": 151,"y": 2.669},{"x": 158,"y": 2.732},{"x": 159,"y": 2.74},{"x": 163,"y": 2.776},{"x": 164,"y": 2.784},{"x": 167,"y": 2.811},{"x": 168,"y": 2.819},{"x": 170,"y": 2.837},{"x": 171,"y": 2.845},{"x": 172,"y": 2.854},{"x": 173,"y": 2.862},{"x": 174,"y": 2.871},{"x": 175,"y": 2.879},{"x": 176,"y": 2.888},{"x": 178,"y": 2.904},{"x": 179,"y": 2.913},{"x": 181,"y": 2.929},{"x": 182,"y": 2.938},{"x": 185,"y": 2.962},{"x": 186,"y": 2.971},{"x": 200,"y": 3.083},{"x": 201,"y": 3.09},{"x": 204,"y": 3.114},{"x": 205,"y": 3.121},{"x": 207,"y": 3.137},{"x": 208,"y": 3.144},{"x": 209,"y": 3.152},{"x": 210,"y": 3.159},{"x": 211,"y": 3.167},{"x": 212,"y": 3.174},{"x": 213,"y": 3.182},{"x": 214,"y": 3.189},{"x": 215,"y": 3.197},{"x": 216,"y": 3.204},{"x": 217,"y": 3.212},{"x": 219,"y": 3.226},{"x": 220,"y": 3.234},{"x": 223,"y": 3.255},{"x": 224,"y": 3.263},{"x": 239,"y": 3.368},{"x": 240,"y": 3.374},{"x": 243,"y": 3.395},{"x": 244,"y": 3.401},{"x": 245,"y": 3.408},{"x": 246,"y": 3.414},{"x": 248,"y": 3.428},{"x": 249,"y": 3.434},{"x": 250,"y": 3.441},{"x": 251,"y": 3.447},{"x": 252,"y": 3.454},{"x": 253,"y": 3.46},{"x": 254,"y": 3.467},{"x": 256,"y": 3.479},{"x": 257,"y": 3.486},{"x": 259,"y": 3.498},{"x": 260,"y": 3.505},{"x": 264,"y": 3.529},{"x": 265,"y": 3.536},{"x": 274,"y": 3.59},{"x": 275,"y": 3.595},{"x": 279,"y": 3.619},{"x": 280,"y": 3.624},{"x": 283,"y": 3.642},{"x": 284,"y": 3.647},{"x": 285,"y": 3.653},{"x": 286,"y": 3.658},{"x": 287,"y": 3.664},{"x": 288,"y": 3.669},{"x": 289,"y": 3.675},{"x": 290,"y": 3.68},{"x": 291,"y": 3.686},{"x": 292,"y": 3.691},{"x": 293,"y": 3.697},{"x": 294,"y": 3.702},{"x": 295,"y": 3.708},{"x": 298,"y": 3.723},{"x": 299,"y": 3.729},{"x": 303,"y": 3.749},{"x": 304,"y": 3.755},{"x": 312,"y": 3.795},{"x": 313,"y": 3.799},{"x": 318,"y": 3.824},{"x": 319,"y": 3.828},{"x": 321,"y": 3.838},{"x": 322,"y": 3.842},{"x": 324,"y": 3.852},{"x": 325,"y": 3.856},{"x": 326,"y": 3.861},{"x": 327,"y": 3.865},{"x": 328,"y": 3.87},{"x": 329,"y": 3.874},{"x": 330,"y": 3.879},{"x": 332,"y": 3.887},{"x": 333,"y": 3.892},{"x": 335,"y": 3.9},{"x": 336,"y": 3.905},{"x": 339,"y": 3.917},{"x": 340,"y": 3.922},{"x": 353,"y": 3.974},{"x": 354,"y": 3.977},{"x": 358,"y": 3.993},{"x": 359,"y": 3.996},{"x": 361,"y": 4.004},{"x": 362,"y": 4.007},{"x": 363,"y": 4.011},{"x": 364,"y": 4.014},{"x": 365,"y": 4.018},{"x": 366,"y": 4.021},{"x": 367,"y": 4.025},{"x": 368,"y": 4.028},{"x": 369,"y": 4.032},{"x": 371,"y": 4.038},{"x": 372,"y": 4.042},{"x": 374,"y": 4.048},{"x": 375,"y": 4.052},{"x": 378,"y": 4.061},{"x": 379,"y": 4.065},{"x": 391,"y": 4.101},{"x": 392,"y": 4.103},{"x": 396,"y": 4.115},{"x": 397,"y": 4.117},{"x": 399,"y": 4.123},{"x": 400,"y": 4.125},{"x": 401,"y": 4.128},{"x": 402,"y": 4.13},{"x": 403,"y": 4.133},{"x": 404,"y": 4.135},{"x": 405,"y": 4.138},{"x": 406,"y": 4.14},{"x": 407,"y": 4.143},{"x": 408,"y": 4.145},{"x": 409,"y": 4.148},{"x": 411,"y": 4.152},{"x": 412,"y": 4.155},{"x": 415,"y": 4.161},{"x": 416,"y": 4.164},{"x": 432,"y": 4.196},{"x": 433,"y": 4.197},{"x": 435,"y": 4.201},{"x": 436,"y": 4.202},{"x": 438,"y": 4.206},{"x": 439,"y": 4.207},{"x": 440,"y": 4.209},{"x": 441,"y": 4.21},{"x": 443,"y": 4.214},{"x": 445,"y": 4.216},{"x": 446,"y": 4.218},{"x": 447,"y": 4.219},{"x": 448,"y": 4.221},{"x": 450,"y": 4.223},{"x": 451,"y": 4.225},{"x": 454,"y": 4.228},{"x": 455,"y": 4.23},{"x": 469,"y": 4.244},{"x": 470,"y": 4.244},{"x": 473,"y": 4.247},{"x": 474,"y": 4.247},{"x": 476,"y": 4.249},{"x": 477,"y": 4.249},{"x": 478,"y": 4.25},{"x": 479,"y": 4.25},{"x": 481,"y": 4.252},{"x": 482,"y": 4.252},{"x": 483,"y": 4.253},{"x": 485,"y": 4.253},{"x": 486,"y": 4.254},{"x": 488,"y": 4.254},{"x": 489,"y": 4.255},{"x": 491,"y": 4.255},{"x": 492,"y": 4.256},{"x": 499,"y": 4.256},{"x": 500,"y": 4.257}]|color=orange}}
|luckgrade06={{#widget:Chart|uniqueId=LuckGrade06|data=[{"x": 0,"y": 1},{"x": 6,"y": 1.078},{"x": 7,"y": 1.09},{"x": 11,"y": 1.142},{"x": 12,"y": 1.154},{"x": 14,"y": 1.18},{"x": 15,"y": 1.192},{"x": 16,"y": 1.205},{"x": 17,"y": 1.217},{"x": 19,"y": 1.243},{"x": 20,"y": 1.255},{"x": 21,"y": 1.268},{"x": 23,"y": 1.292},{"x": 24,"y": 1.305},{"x": 25,"y": 1.317},{"x": 26,"y": 1.33},{"x": 29,"y": 1.366},{"x": 30,"y": 1.379},{"x": 34,"y": 1.427},{"x": 35,"y": 1.44},{"x": 43,"y": 1.536},{"x": 44,"y": 1.547},{"x": 48,"y": 1.595},{"x": 49,"y": 1.606},{"x": 52,"y": 1.642},{"x": 53,"y": 1.653},{"x": 54,"y": 1.665},{"x": 55,"y": 1.676},{"x": 57,"y": 1.7},{"x": 58,"y": 1.711},{"x": 59,"y": 1.723},{"x": 61,"y": 1.745},{"x": 62,"y": 1.757},{"x": 63,"y": 1.768},{"x": 64,"y": 1.78},{"x": 66,"y": 1.802},{"x": 67,"y": 1.814},{"x": 71,"y": 1.858},{"x": 72,"y": 1.87},{"x": 83,"y": 1.991},{"x": 84,"y": 2.001},{"x": 87,"y": 2.034},{"x": 88,"y": 2.044},{"x": 91,"y": 2.077},{"x": 92,"y": 2.087},{"x": 93,"y": 2.098},{"x": 94,"y": 2.108},{"x": 95,"y": 2.119},{"x": 96,"y": 2.129},{"x": 97,"y": 2.14},{"x": 98,"y": 2.15},{"x": 99,"y": 2.161},{"x": 100,"y": 2.171},{"x": 101,"y": 2.182},{"x": 103,"y": 2.202},{"x": 104,"y": 2.213},{"x": 106,"y": 2.233},{"x": 107,"y": 2.244},{"x": 113,"y": 2.304},{"x": 114,"y": 2.315},{"x": 118,"y": 2.355},{"x": 119,"y": 2.364},{"x": 125,"y": 2.424},{"x": 126,"y": 2.433},{"x": 128,"y": 2.453},{"x": 129,"y": 2.462},{"x": 131,"y": 2.482},{"x": 132,"y": 2.491},{"x": 133,"y": 2.501},{"x": 134,"y": 2.51},{"x": 135,"y": 2.52},{"x": 136,"y": 2.529},{"x": 137,"y": 2.539},{"x": 138,"y": 2.548},{"x": 139,"y": 2.558},{"x": 141,"y": 2.576},{"x": 142,"y": 2.586},{"x": 144,"y": 2.604},{"x": 145,"y": 2.614},{"x": 150,"y": 2.659},{"x": 151,"y": 2.669},{"x": 158,"y": 2.732},{"x": 159,"y": 2.74},{"x": 163,"y": 2.776},{"x": 164,"y": 2.784},{"x": 167,"y": 2.811},{"x": 168,"y": 2.819},{"x": 170,"y": 2.837},{"x": 171,"y": 2.845},{"x": 172,"y": 2.854},{"x": 173,"y": 2.862},{"x": 174,"y": 2.871},{"x": 175,"y": 2.879},{"x": 176,"y": 2.888},{"x": 178,"y": 2.904},{"x": 179,"y": 2.913},{"x": 181,"y": 2.929},{"x": 182,"y": 2.938},{"x": 185,"y": 2.962},{"x": 186,"y": 2.971},{"x": 200,"y": 3.083},{"x": 201,"y": 3.09},{"x": 204,"y": 3.114},{"x": 205,"y": 3.121},{"x": 207,"y": 3.137},{"x": 208,"y": 3.144},{"x": 209,"y": 3.152},{"x": 210,"y": 3.159},{"x": 211,"y": 3.167},{"x": 212,"y": 3.174},{"x": 213,"y": 3.182},{"x": 214,"y": 3.189},{"x": 215,"y": 3.197},{"x": 216,"y": 3.204},{"x": 217,"y": 3.212},{"x": 219,"y": 3.226},{"x": 220,"y": 3.234},{"x": 223,"y": 3.255},{"x": 224,"y": 3.263},{"x": 239,"y": 3.368},{"x": 240,"y": 3.374},{"x": 243,"y": 3.395},{"x": 244,"y": 3.401},{"x": 245,"y": 3.408},{"x": 246,"y": 3.414},{"x": 248,"y": 3.428},{"x": 249,"y": 3.434},{"x": 250,"y": 3.441},{"x": 251,"y": 3.447},{"x": 252,"y": 3.454},{"x": 253,"y": 3.46},{"x": 254,"y": 3.467},{"x": 256,"y": 3.479},{"x": 257,"y": 3.486},{"x": 259,"y": 3.498},{"x": 260,"y": 3.505},{"x": 264,"y": 3.529},{"x": 265,"y": 3.536},{"x": 274,"y": 3.59},{"x": 275,"y": 3.595},{"x": 279,"y": 3.619},{"x": 280,"y": 3.624},{"x": 283,"y": 3.642},{"x": 284,"y": 3.647},{"x": 285,"y": 3.653},{"x": 286,"y": 3.658},{"x": 287,"y": 3.664},{"x": 288,"y": 3.669},{"x": 289,"y": 3.675},{"x": 290,"y": 3.68},{"x": 291,"y": 3.686},{"x": 292,"y": 3.691},{"x": 293,"y": 3.697},{"x": 294,"y": 3.702},{"x": 295,"y": 3.708},{"x": 298,"y": 3.723},{"x": 299,"y": 3.729},{"x": 303,"y": 3.749},{"x": 304,"y": 3.755},{"x": 312,"y": 3.795},{"x": 313,"y": 3.799},{"x": 318,"y": 3.824},{"x": 319,"y": 3.828},{"x": 321,"y": 3.838},{"x": 322,"y": 3.842},{"x": 324,"y": 3.852},{"x": 325,"y": 3.856},{"x": 326,"y": 3.861},{"x": 327,"y": 3.865},{"x": 328,"y": 3.87},{"x": 329,"y": 3.874},{"x": 330,"y": 3.879},{"x": 332,"y": 3.887},{"x": 333,"y": 3.892},{"x": 335,"y": 3.9},{"x": 336,"y": 3.905},{"x": 339,"y": 3.917},{"x": 340,"y": 3.922},{"x": 353,"y": 3.974},{"x": 354,"y": 3.977},{"x": 358,"y": 3.993},{"x": 359,"y": 3.996},{"x": 361,"y": 4.004},{"x": 362,"y": 4.007},{"x": 363,"y": 4.011},{"x": 364,"y": 4.014},{"x": 365,"y": 4.018},{"x": 366,"y": 4.021},{"x": 367,"y": 4.025},{"x": 368,"y": 4.028},{"x": 369,"y": 4.032},{"x": 371,"y": 4.038},{"x": 372,"y": 4.042},{"x": 374,"y": 4.048},{"x": 375,"y": 4.052},{"x": 378,"y": 4.061},{"x": 379,"y": 4.065},{"x": 391,"y": 4.101},{"x": 392,"y": 4.103},{"x": 396,"y": 4.115},{"x": 397,"y": 4.117},{"x": 399,"y": 4.123},{"x": 400,"y": 4.125},{"x": 401,"y": 4.128},{"x": 402,"y": 4.13},{"x": 403,"y": 4.133},{"x": 404,"y": 4.135},{"x": 405,"y": 4.138},{"x": 406,"y": 4.14},{"x": 407,"y": 4.143},{"x": 408,"y": 4.145},{"x": 409,"y": 4.148},{"x": 411,"y": 4.152},{"x": 412,"y": 4.155},{"x": 415,"y": 4.161},{"x": 416,"y": 4.164},{"x": 432,"y": 4.196},{"x": 433,"y": 4.197},{"x": 435,"y": 4.201},{"x": 436,"y": 4.202},{"x": 438,"y": 4.206},{"x": 439,"y": 4.207},{"x": 440,"y": 4.209},{"x": 441,"y": 4.21},{"x": 443,"y": 4.214},{"x": 445,"y": 4.216},{"x": 446,"y": 4.218},{"x": 447,"y": 4.219},{"x": 448,"y": 4.221},{"x": 450,"y": 4.223},{"x": 451,"y": 4.225},{"x": 454,"y": 4.228},{"x": 455,"y": 4.23},{"x": 469,"y": 4.244},{"x": 470,"y": 4.244},{"x": 473,"y": 4.247},{"x": 474,"y": 4.247},{"x": 476,"y": 4.249},{"x": 477,"y": 4.249},{"x": 478,"y": 4.25},{"x": 479,"y": 4.25},{"x": 481,"y": 4.252},{"x": 482,"y": 4.252},{"x": 483,"y": 4.253},{"x": 485,"y": 4.253},{"x": 486,"y": 4.254},{"x": 488,"y": 4.254},{"x": 489,"y": 4.255},{"x": 491,"y": 4.255},{"x": 492,"y": 4.256},{"x": 499,"y": 4.256},{"x": 500,"y": 4.257}]|color=orange}}
|luckgrade07={{#widget:Chart|uniqueId=LuckGrade07|data=[{"x": 0,"y": 1},{"x": 1,"y": 1.014},{"x": 3,"y": 1.04},{"x": 4,"y": 1.054},{"x": 5,"y": 1.067},{"x": 6,"y": 1.081},{"x": 8,"y": 1.107},{"x": 9,"y": 1.121},{"x": 13,"y": 1.173},{"x": 14,"y": 1.187},{"x": 24,"y": 1.317},{"x": 25,"y": 1.329},{"x": 29,"y": 1.381},{"x": 30,"y": 1.393},{"x": 32,"y": 1.419},{"x": 33,"y": 1.431},{"x": 34,"y": 1.444},{"x": 35,"y": 1.456},{"x": 37,"y": 1.482},{"x": 39,"y": 1.506},{"x": 40,"y": 1.519},{"x": 41,"y": 1.531},{"x": 42,"y": 1.544},{"x": 44,"y": 1.568},{"x": 45,"y": 1.581},{"x": 47,"y": 1.605},{"x": 48,"y": 1.618},{"x": 64,"y": 1.81},{"x": 65,"y": 1.821},{"x": 67,"y": 1.845},{"x": 68,"y": 1.856},{"x": 70,"y": 1.88},{"x": 71,"y": 1.891},{"x": 73,"y": 1.915},{"x": 74,"y": 1.926},{"x": 75,"y": 1.938},{"x": 77,"y": 1.96},{"x": 78,"y": 1.972},{"x": 79,"y": 1.983},{"x": 80,"y": 1.995},{"x": 82,"y": 2.017},{"x": 83,"y": 2.029},{"x": 87,"y": 2.073},{"x": 88,"y": 2.085},{"x": 99,"y": 2.206},{"x": 100,"y": 2.216},{"x": 103,"y": 2.249},{"x": 104,"y": 2.259},{"x": 106,"y": 2.281},{"x": 107,"y": 2.291},{"x": 109,"y": 2.313},{"x": 110,"y": 2.323},{"x": 111,"y": 2.334},{"x": 112,"y": 2.344},{"x": 113,"y": 2.355},{"x": 114,"y": 2.365},{"x": 115,"y": 2.376},{"x": 117,"y": 2.396},{"x": 118,"y": 2.407},{"x": 121,"y": 2.437},{"x": 122,"y": 2.448},{"x": 127,"y": 2.498},{"x": 128,"y": 2.509},{"x": 132,"y": 2.549},{"x": 133,"y": 2.558},{"x": 139,"y": 2.618},{"x": 140,"y": 2.627},{"x": 142,"y": 2.647},{"x": 143,"y": 2.656},{"x": 145,"y": 2.676},{"x": 146,"y": 2.685},{"x": 147,"y": 2.695},{"x": 148,"y": 2.704},{"x": 149,"y": 2.714},{"x": 150,"y": 2.723},{"x": 151,"y": 2.733},{"x": 152,"y": 2.742},{"x": 153,"y": 2.752},{"x": 155,"y": 2.77},{"x": 156,"y": 2.78},{"x": 159,"y": 2.807},{"x": 160,"y": 2.817},{"x": 174,"y": 2.943},{"x": 175,"y": 2.951},{"x": 178,"y": 2.978},{"x": 179,"y": 2.986},{"x": 181,"y": 3.004},{"x": 182,"y": 3.012},{"x": 183,"y": 3.021},{"x": 184,"y": 3.029},{"x": 185,"y": 3.038},{"x": 186,"y": 3.046},{"x": 187,"y": 3.055},{"x": 188,"y": 3.063},{"x": 189,"y": 3.072},{"x": 190,"y": 3.08},{"x": 191,"y": 3.089},{"x": 193,"y": 3.105},{"x": 194,"y": 3.114},{"x": 198,"y": 3.146},{"x": 199,"y": 3.155},{"x": 209,"y": 3.235},{"x": 210,"y": 3.242},{"x": 214,"y": 3.274},{"x": 215,"y": 3.281},{"x": 217,"y": 3.297},{"x": 218,"y": 3.304},{"x": 220,"y": 3.32},{"x": 221,"y": 3.327},{"x": 222,"y": 3.335},{"x": 223,"y": 3.342},{"x": 224,"y": 3.35},{"x": 225,"y": 3.357},{"x": 226,"y": 3.365},{"x": 228,"y": 3.379},{"x": 229,"y": 3.387},{"x": 231,"y": 3.401},{"x": 232,"y": 3.409},{"x": 237,"y": 3.444},{"x": 238,"y": 3.452},{"x": 244,"y": 3.494},{"x": 245,"y": 3.5},{"x": 250,"y": 3.535},{"x": 251,"y": 3.541},{"x": 253,"y": 3.555},{"x": 254,"y": 3.561},{"x": 256,"y": 3.575},{"x": 257,"y": 3.581},{"x": 258,"y": 3.588},{"x": 259,"y": 3.594},{"x": 260,"y": 3.601},{"x": 261,"y": 3.607},{"x": 262,"y": 3.614},{"x": 263,"y": 3.62},{"x": 264,"y": 3.627},{"x": 266,"y": 3.639},{"x": 267,"y": 3.646},{"x": 270,"y": 3.664},{"x": 271,"y": 3.671},{"x": 286,"y": 3.761},{"x": 287,"y": 3.766},{"x": 290,"y": 3.784},{"x": 291,"y": 3.789},{"x": 292,"y": 3.795},{"x": 293,"y": 3.8},{"x": 295,"y": 3.812},{"x": 296,"y": 3.817},{"x": 297,"y": 3.823},{"x": 298,"y": 3.828},{"x": 299,"y": 3.834},{"x": 301,"y": 3.844},{"x": 302,"y": 3.85},{"x": 304,"y": 3.86},{"x": 305,"y": 3.866},{"x": 308,"y": 3.881},{"x": 309,"y": 3.887},{"x": 322,"y": 3.952},{"x": 323,"y": 3.956},{"x": 326,"y": 3.971},{"x": 327,"y": 3.975},{"x": 329,"y": 3.985},{"x": 330,"y": 3.989},{"x": 331,"y": 3.994},{"x": 332,"y": 3.998},{"x": 334,"y": 4.008},{"x": 336,"y": 4.016},{"x": 337,"y": 4.021},{"x": 338,"y": 4.025},{"x": 339,"y": 4.03},{"x": 341,"y": 4.038},{"x": 342,"y": 4.043},{"x": 345,"y": 4.055},{"x": 346,"y": 4.06},{"x": 358,"y": 4.108},{"x": 359,"y": 4.111},{"x": 363,"y": 4.127},{"x": 364,"y": 4.13},{"x": 366,"y": 4.138},{"x": 367,"y": 4.141},{"x": 368,"y": 4.145},{"x": 369,"y": 4.148},{"x": 370,"y": 4.152},{"x": 371,"y": 4.155},{"x": 372,"y": 4.159},{"x": 373,"y": 4.162},{"x": 374,"y": 4.166},{"x": 375,"y": 4.169},{"x": 376,"y": 4.173},{"x": 379,"y": 4.182},{"x": 380,"y": 4.186},{"x": 383,"y": 4.195},{"x": 384,"y": 4.199},{"x": 394,"y": 4.229},{"x": 395,"y": 4.231},{"x": 399,"y": 4.243},{"x": 400,"y": 4.245},{"x": 402,"y": 4.251},{"x": 403,"y": 4.253},{"x": 405,"y": 4.259},{"x": 406,"y": 4.261},{"x": 407,"y": 4.264},{"x": 408,"y": 4.266},{"x": 409,"y": 4.269},{"x": 410,"y": 4.271},{"x": 411,"y": 4.274},{"x": 413,"y": 4.278},{"x": 414,"y": 4.281},{"x": 416,"y": 4.285},{"x": 417,"y": 4.288},{"x": 421,"y": 4.296},{"x": 422,"y": 4.299},{"x": 431,"y": 4.317},{"x": 432,"y": 4.318},{"x": 436,"y": 4.326},{"x": 437,"y": 4.327},{"x": 439,"y": 4.331},{"x": 440,"y": 4.332},{"x": 442,"y": 4.336},{"x": 443,"y": 4.337},{"x": 444,"y": 4.339},{"x": 445,"y": 4.34},{"x": 446,"y": 4.342},{"x": 447,"y": 4.343},{"x": 448,"y": 4.345},{"x": 450,"y": 4.347},{"x": 451,"y": 4.349},{"x": 453,"y": 4.351},{"x": 454,"y": 4.353},{"x": 458,"y": 4.357},{"x": 459,"y": 4.359},{"x": 467,"y": 4.367},{"x": 468,"y": 4.367},{"x": 473,"y": 4.372},{"x": 474,"y": 4.372},{"x": 476,"y": 4.374},{"x": 477,"y": 4.374},{"x": 479,"y": 4.376},{"x": 480,"y": 4.376},{"x": 481,"y": 4.377},{"x": 482,"y": 4.377},{"x": 483,"y": 4.378},{"x": 484,"y": 4.378},{"x": 485,"y": 4.379},{"x": 487,"y": 4.379},{"x": 488,"y": 4.38},{"x": 490,"y": 4.38},{"x": 491,"y": 4.381},{"x": 496,"y": 4.381},{"x": 497,"y": 4.382},{"x": 500,"y": 4.382}]|color=orange}}
|luckgrade07={{#widget:Chart|uniqueId=LuckGrade07|data=[{"x": 0,"y": 1},{"x": 1,"y": 1.014},{"x": 3,"y": 1.04},{"x": 4,"y": 1.054},{"x": 5,"y": 1.067},{"x": 6,"y": 1.081},{"x": 8,"y": 1.107},{"x": 9,"y": 1.121},{"x": 13,"y": 1.173},{"x": 14,"y": 1.187},{"x": 24,"y": 1.317},{"x": 25,"y": 1.329},{"x": 29,"y": 1.381},{"x": 30,"y": 1.393},{"x": 32,"y": 1.419},{"x": 33,"y": 1.431},{"x": 34,"y": 1.444},{"x": 35,"y": 1.456},{"x": 37,"y": 1.482},{"x": 39,"y": 1.506},{"x": 40,"y": 1.519},{"x": 41,"y": 1.531},{"x": 42,"y": 1.544},{"x": 44,"y": 1.568},{"x": 45,"y": 1.581},{"x": 47,"y": 1.605},{"x": 48,"y": 1.618},{"x": 64,"y": 1.81},{"x": 65,"y": 1.821},{"x": 67,"y": 1.845},{"x": 68,"y": 1.856},{"x": 70,"y": 1.88},{"x": 71,"y": 1.891},{"x": 73,"y": 1.915},{"x": 74,"y": 1.926},{"x": 75,"y": 1.938},{"x": 77,"y": 1.96},{"x": 78,"y": 1.972},{"x": 79,"y": 1.983},{"x": 80,"y": 1.995},{"x": 82,"y": 2.017},{"x": 83,"y": 2.029},{"x": 87,"y": 2.073},{"x": 88,"y": 2.085},{"x": 99,"y": 2.206},{"x": 100,"y": 2.216},{"x": 103,"y": 2.249},{"x": 104,"y": 2.259},{"x": 106,"y": 2.281},{"x": 107,"y": 2.291},{"x": 109,"y": 2.313},{"x": 110,"y": 2.323},{"x": 111,"y": 2.334},{"x": 112,"y": 2.344},{"x": 113,"y": 2.355},{"x": 114,"y": 2.365},{"x": 115,"y": 2.376},{"x": 117,"y": 2.396},{"x": 118,"y": 2.407},{"x": 121,"y": 2.437},{"x": 122,"y": 2.448},{"x": 127,"y": 2.498},{"x": 128,"y": 2.509},{"x": 132,"y": 2.549},{"x": 133,"y": 2.558},{"x": 139,"y": 2.618},{"x": 140,"y": 2.627},{"x": 142,"y": 2.647},{"x": 143,"y": 2.656},{"x": 145,"y": 2.676},{"x": 146,"y": 2.685},{"x": 147,"y": 2.695},{"x": 148,"y": 2.704},{"x": 149,"y": 2.714},{"x": 150,"y": 2.723},{"x": 151,"y": 2.733},{"x": 152,"y": 2.742},{"x": 153,"y": 2.752},{"x": 155,"y": 2.77},{"x": 156,"y": 2.78},{"x": 159,"y": 2.807},{"x": 160,"y": 2.817},{"x": 174,"y": 2.943},{"x": 175,"y": 2.951},{"x": 178,"y": 2.978},{"x": 179,"y": 2.986},{"x": 181,"y": 3.004},{"x": 182,"y": 3.012},{"x": 183,"y": 3.021},{"x": 184,"y": 3.029},{"x": 185,"y": 3.038},{"x": 186,"y": 3.046},{"x": 187,"y": 3.055},{"x": 188,"y": 3.063},{"x": 189,"y": 3.072},{"x": 190,"y": 3.08},{"x": 191,"y": 3.089},{"x": 193,"y": 3.105},{"x": 194,"y": 3.114},{"x": 198,"y": 3.146},{"x": 199,"y": 3.155},{"x": 209,"y": 3.235},{"x": 210,"y": 3.242},{"x": 214,"y": 3.274},{"x": 215,"y": 3.281},{"x": 217,"y": 3.297},{"x": 218,"y": 3.304},{"x": 220,"y": 3.32},{"x": 221,"y": 3.327},{"x": 222,"y": 3.335},{"x": 223,"y": 3.342},{"x": 224,"y": 3.35},{"x": 225,"y": 3.357},{"x": 226,"y": 3.365},{"x": 228,"y": 3.379},{"x": 229,"y": 3.387},{"x": 231,"y": 3.401},{"x": 232,"y": 3.409},{"x": 237,"y": 3.444},{"x": 238,"y": 3.452},{"x": 244,"y": 3.494},{"x": 245,"y": 3.5},{"x": 250,"y": 3.535},{"x": 251,"y": 3.541},{"x": 253,"y": 3.555},{"x": 254,"y": 3.561},{"x": 256,"y": 3.575},{"x": 257,"y": 3.581},{"x": 258,"y": 3.588},{"x": 259,"y": 3.594},{"x": 260,"y": 3.601},{"x": 261,"y": 3.607},{"x": 262,"y": 3.614},{"x": 263,"y": 3.62},{"x": 264,"y": 3.627},{"x": 266,"y": 3.639},{"x": 267,"y": 3.646},{"x": 270,"y": 3.664},{"x": 271,"y": 3.671},{"x": 286,"y": 3.761},{"x": 287,"y": 3.766},{"x": 290,"y": 3.784},{"x": 291,"y": 3.789},{"x": 292,"y": 3.795},{"x": 293,"y": 3.8},{"x": 295,"y": 3.812},{"x": 296,"y": 3.817},{"x": 297,"y": 3.823},{"x": 298,"y": 3.828},{"x": 299,"y": 3.834},{"x": 301,"y": 3.844},{"x": 302,"y": 3.85},{"x": 304,"y": 3.86},{"x": 305,"y": 3.866},{"x": 308,"y": 3.881},{"x": 309,"y": 3.887},{"x": 322,"y": 3.952},{"x": 323,"y": 3.956},{"x": 326,"y": 3.971},{"x": 327,"y": 3.975},{"x": 329,"y": 3.985},{"x": 330,"y": 3.989},{"x": 331,"y": 3.994},{"x": 332,"y": 3.998},{"x": 334,"y": 4.008},{"x": 336,"y": 4.016},{"x": 337,"y": 4.021},{"x": 338,"y": 4.025},{"x": 339,"y": 4.03},{"x": 341,"y": 4.038},{"x": 342,"y": 4.043},{"x": 345,"y": 4.055},{"x": 346,"y": 4.06},{"x": 358,"y": 4.108},{"x": 359,"y": 4.111},{"x": 363,"y": 4.127},{"x": 364,"y": 4.13},{"x": 366,"y": 4.138},{"x": 367,"y": 4.141},{"x": 368,"y": 4.145},{"x": 369,"y": 4.148},{"x": 370,"y": 4.152},{"x": 371,"y": 4.155},{"x": 372,"y": 4.159},{"x": 373,"y": 4.162},{"x": 374,"y": 4.166},{"x": 375,"y": 4.169},{"x": 376,"y": 4.173},{"x": 379,"y": 4.182},{"x": 380,"y": 4.186},{"x": 383,"y": 4.195},{"x": 384,"y": 4.199},{"x": 394,"y": 4.229},{"x": 395,"y": 4.231},{"x": 399,"y": 4.243},{"x": 400,"y": 4.245},{"x": 402,"y": 4.251},{"x": 403,"y": 4.253},{"x": 405,"y": 4.259},{"x": 406,"y": 4.261},{"x": 407,"y": 4.264},{"x": 408,"y": 4.266},{"x": 409,"y": 4.269},{"x": 410,"y": 4.271},{"x": 411,"y": 4.274},{"x": 413,"y": 4.278},{"x": 414,"y": 4.281},{"x": 416,"y": 4.285},{"x": 417,"y": 4.288},{"x": 421,"y": 4.296},{"x": 422,"y": 4.299},{"x": 431,"y": 4.317},{"x": 432,"y": 4.318},{"x": 436,"y": 4.326},{"x": 437,"y": 4.327},{"x": 439,"y": 4.331},{"x": 440,"y": 4.332},{"x": 442,"y": 4.336},{"x": 443,"y": 4.337},{"x": 444,"y": 4.339},{"x": 445,"y": 4.34},{"x": 446,"y": 4.342},{"x": 447,"y": 4.343},{"x": 448,"y": 4.345},{"x": 450,"y": 4.347},{"x": 451,"y": 4.349},{"x": 453,"y": 4.351},{"x": 454,"y": 4.353},{"x": 458,"y": 4.357},{"x": 459,"y": 4.359},{"x": 467,"y": 4.367},{"x": 468,"y": 4.367},{"x": 473,"y": 4.372},{"x": 474,"y": 4.372},{"x": 476,"y": 4.374},{"x": 477,"y": 4.374},{"x": 479,"y": 4.376},{"x": 480,"y": 4.376},{"x": 481,"y": 4.377},{"x": 482,"y": 4.377},{"x": 483,"y": 4.378},{"x": 484,"y": 4.378},{"x": 485,"y": 4.379},{"x": 487,"y": 4.379},{"x": 488,"y": 4.38},{"x": 490,"y": 4.38},{"x": 491,"y": 4.381},{"x": 496,"y": 4.381},{"x": 497,"y": 4.382},{"x": 500,"y": 4.382}]|color=orange}}
|luckgrade08={{#widget:Chart|uniqueId=LuckGrade08|data=[{"x": 0,"y": 1},{"x": 1,"y": 1.014},{"x": 3,"y": 1.04},{"x": 4,"y": 1.054},{"x": 5,"y": 1.067},{"x": 6,"y": 1.081},{"x": 8,"y": 1.107},{"x": 9,"y": 1.121},{"x": 13,"y": 1.173},{"x": 14,"y": 1.187},{"x": 24,"y": 1.317},{"x": 25,"y": 1.329},{"x": 29,"y": 1.381},{"x": 30,"y": 1.393},{"x": 32,"y": 1.419},{"x": 33,"y": 1.431},{"x": 34,"y": 1.444},{"x": 35,"y": 1.456},{"x": 37,"y": 1.482},{"x": 39,"y": 1.506},{"x": 40,"y": 1.519},{"x": 41,"y": 1.531},{"x": 42,"y": 1.544},{"x": 44,"y": 1.568},{"x": 45,"y": 1.581},{"x": 47,"y": 1.605},{"x": 48,"y": 1.618},{"x": 64,"y": 1.81},{"x": 65,"y": 1.821},{"x": 67,"y": 1.845},{"x": 68,"y": 1.856},{"x": 70,"y": 1.88},{"x": 71,"y": 1.891},{"x": 73,"y": 1.915},{"x": 74,"y": 1.926},{"x": 75,"y": 1.938},{"x": 77,"y": 1.96},{"x": 78,"y": 1.972},{"x": 79,"y": 1.983},{"x": 80,"y": 1.995},{"x": 82,"y": 2.017},{"x": 83,"y": 2.029},{"x": 87,"y": 2.073},{"x": 88,"y": 2.085},{"x": 99,"y": 2.206},{"x": 100,"y": 2.216},{"x": 103,"y": 2.249},{"x": 104,"y": 2.259},{"x": 106,"y": 2.281},{"x": 107,"y": 2.291},{"x": 109,"y": 2.313},{"x": 110,"y": 2.323},{"x": 111,"y": 2.334},{"x": 112,"y": 2.344},{"x": 113,"y": 2.355},{"x": 114,"y": 2.365},{"x": 115,"y": 2.376},{"x": 117,"y": 2.396},{"x": 118,"y": 2.407},{"x": 121,"y": 2.437},{"x": 122,"y": 2.448},{"x": 127,"y": 2.498},{"x": 128,"y": 2.509},{"x": 132,"y": 2.549},{"x": 133,"y": 2.558},{"x": 139,"y": 2.618},{"x": 140,"y": 2.627},{"x": 142,"y": 2.647},{"x": 143,"y": 2.656},{"x": 145,"y": 2.676},{"x": 146,"y": 2.685},{"x": 147,"y": 2.695},{"x": 148,"y": 2.704},{"x": 149,"y": 2.714},{"x": 150,"y": 2.723},{"x": 151,"y": 2.733},{"x": 152,"y": 2.742},{"x": 153,"y": 2.752},{"x": 155,"y": 2.77},{"x": 156,"y": 2.78},{"x": 159,"y": 2.807},{"x": 160,"y": 2.817},{"x": 174,"y": 2.943},{"x": 175,"y": 2.951},{"x": 178,"y": 2.978},{"x": 179,"y": 2.986},{"x": 181,"y": 3.004},{"x": 182,"y": 3.012},{"x": 183,"y": 3.021},{"x": 184,"y": 3.029},{"x": 185,"y": 3.038},{"x": 186,"y": 3.046},{"x": 187,"y": 3.055},{"x": 188,"y": 3.063},{"x": 189,"y": 3.072},{"x": 190,"y": 3.08},{"x": 191,"y": 3.089},{"x": 193,"y": 3.105},{"x": 194,"y": 3.114},{"x": 198,"y": 3.146},{"x": 199,"y": 3.155},{"x": 209,"y": 3.235},{"x": 210,"y": 3.242},{"x": 214,"y": 3.274},{"x": 215,"y": 3.281},{"x": 217,"y": 3.297},{"x": 218,"y": 3.304},{"x": 220,"y": 3.32},{"x": 221,"y": 3.327},{"x": 222,"y": 3.335},{"x": 223,"y": 3.342},{"x": 224,"y": 3.35},{"x": 225,"y": 3.357},{"x": 226,"y": 3.365},{"x": 228,"y": 3.379},{"x": 229,"y": 3.387},{"x": 231,"y": 3.401},{"x": 232,"y": 3.409},{"x": 237,"y": 3.444},{"x": 238,"y": 3.452},{"x": 244,"y": 3.494},{"x": 245,"y": 3.5},{"x": 250,"y": 3.535},{"x": 251,"y": 3.541},{"x": 253,"y": 3.555},{"x": 254,"y": 3.561},{"x": 256,"y": 3.575},{"x": 257,"y": 3.581},{"x": 258,"y": 3.588},{"x": 259,"y": 3.594},{"x": 260,"y": 3.601},{"x": 261,"y": 3.607},{"x": 262,"y": 3.614},{"x": 263,"y": 3.62},{"x": 264,"y": 3.627},{"x": 266,"y": 3.639},{"x": 267,"y": 3.646},{"x": 270,"y": 3.664},{"x": 271,"y": 3.671},{"x": 286,"y": 3.761},{"x": 287,"y": 3.766},{"x": 290,"y": 3.784},{"x": 291,"y": 3.789},{"x": 292,"y": 3.795},{"x": 293,"y": 3.8},{"x": 295,"y": 3.812},{"x": 296,"y": 3.817},{"x": 297,"y": 3.823},{"x": 298,"y": 3.828},{"x": 299,"y": 3.834},{"x": 301,"y": 3.844},{"x": 302,"y": 3.85},{"x": 304,"y": 3.86},{"x": 305,"y": 3.866},{"x": 308,"y": 3.881},{"x": 309,"y": 3.887},{"x": 322,"y": 3.952},{"x": 323,"y": 3.956},{"x": 326,"y": 3.971},{"x": 327,"y": 3.975},{"x": 329,"y": 3.985},{"x": 330,"y": 3.989},{"x": 331,"y": 3.994},{"x": 332,"y": 3.998},{"x": 334,"y": 4.008},{"x": 336,"y": 4.016},{"x": 337,"y": 4.021},{"x": 338,"y": 4.025},{"x": 339,"y": 4.03},{"x": 341,"y": 4.038},{"x": 342,"y": 4.043},{"x": 345,"y": 4.055},{"x": 346,"y": 4.06},{"x": 358,"y": 4.108},{"x": 359,"y": 4.111},{"x": 363,"y": 4.127},{"x": 364,"y": 4.13},{"x": 366,"y": 4.138},{"x": 367,"y": 4.141},{"x": 368,"y": 4.145},{"x": 369,"y": 4.148},{"x": 370,"y": 4.152},{"x": 371,"y": 4.155},{"x": 372,"y": 4.159},{"x": 373,"y": 4.162},{"x": 374,"y": 4.166},{"x": 375,"y": 4.169},{"x": 376,"y": 4.173},{"x": 379,"y": 4.182},{"x": 380,"y": 4.186},{"x": 383,"y": 4.195},{"x": 384,"y": 4.199},{"x": 394,"y": 4.229},{"x": 395,"y": 4.231},{"x": 399,"y": 4.243},{"x": 400,"y": 4.245},{"x": 402,"y": 4.251},{"x": 403,"y": 4.253},{"x": 405,"y": 4.259},{"x": 406,"y": 4.261},{"x": 407,"y": 4.264},{"x": 408,"y": 4.266},{"x": 409,"y": 4.269},{"x": 410,"y": 4.271},{"x": 411,"y": 4.274},{"x": 413,"y": 4.278},{"x": 414,"y": 4.281},{"x": 416,"y": 4.285},{"x": 417,"y": 4.288},{"x": 421,"y": 4.296},{"x": 422,"y": 4.299},{"x": 431,"y": 4.317},{"x": 432,"y": 4.318},{"x": 436,"y": 4.326},{"x": 437,"y": 4.327},{"x": 439,"y": 4.331},{"x": 440,"y": 4.332},{"x": 442,"y": 4.336},{"x": 443,"y": 4.337},{"x": 444,"y": 4.339},{"x": 445,"y": 4.34},{"x": 446,"y": 4.342},{"x": 447,"y": 4.343},{"x": 448,"y": 4.345},{"x": 450,"y": 4.347},{"x": 451,"y": 4.349},{"x": 453,"y": 4.351},{"x": 454,"y": 4.353},{"x": 458,"y": 4.357},{"x": 459,"y": 4.359},{"x": 467,"y": 4.367},{"x": 468,"y": 4.367},{"x": 473,"y": 4.372},{"x": 474,"y": 4.372},{"x": 476,"y": 4.374},{"x": 477,"y": 4.374},{"x": 479,"y": 4.376},{"x": 480,"y": 4.376},{"x": 481,"y": 4.377},{"x": 482,"y": 4.377},{"x": 483,"y": 4.378},{"x": 484,"y": 4.378},{"x": 485,"y": 4.379},{"x": 487,"y": 4.379},{"x": 488,"y": 4.38},{"x": 490,"y": 4.38},{"x": 491,"y": 4.381},{"x": 496,"y": 4.381},{"x": 497,"y": 4.382},{"x": 500,"y": 4.382}]|color=orange}}
|magicaldamagereduction=Magic Resistance governs your Magical Damage Reduction.
|magicaldamagereduction=Magic Resistance governs your Magical Damage Reduction.


Line 190: Line 206:
*0 to 5 = 4 each, up to 0
*0 to 5 = 4 each, up to 0
*5 to 15 = 3 each, up to 30
*5 to 15 = 3 each, up to 30
*15 to 20 = 4 each, up to 50
*15 to 33 = 4 each, up to 102
*20 to 28 = 5 each, up to 90
*33 to 48 = 3 each, up to 147
*28 to 38 = 4 each, up to 130
*48 to 58 = 2 each, up to 167
*38 to 48 = 3 each, up to 160
*58 to 100 = 1 each, up to 209
*48 to 58 = 2 each, up to 180
*58 to 100 = 1 each, up to 222


{{#widget:Chart|uniqueId=MagicResistance|data=[{"x": 0,"y": -20},{"x": 5,"y": 0},{"x": 15,"y": 30},{"x": 20,"y": 50},{"x": 28,"y": 90},{"x": 38,"y": 130},{"x": 48,"y": 160},{"x": 58,"y": 180},{"x": 100,"y": 222}]|color=orange}}
{{#widget:Chart|uniqueId=MagicResistance|data=[{"x": 0,"y": -20},{"x": 5,"y": 0},{"x": 15,"y": 30},{"x": 33,"y": 102},{"x": 48,"y": 147},{"x": 58,"y": 167},{"x": 100,"y": 209}]|color=orange}}
|manualdexterity=Dexterity governs your Manual Dexterity.
|manualdexterity=Dexterity governs your Manual Dexterity.


Line 211: Line 225:


{{#widget:Chart|uniqueId=ManualDexterity|data=[{"x": 0,"y": -0.15},{"x": 15,"y": 0},{"x": 23,"y": 0.24},{"x": 31,"y": 0.4},{"x": 37,"y": 0.46},{"x": 45,"y": 0.5},{"x": 95,"y": 0.55},{"x": 100,"y": 0.55}]|color=orange}}
{{#widget:Chart|uniqueId=ManualDexterity|data=[{"x": 0,"y": -0.15},{"x": 15,"y": 0},{"x": 23,"y": 0.24},{"x": 31,"y": 0.4},{"x": 37,"y": 0.46},{"x": 45,"y": 0.5},{"x": 95,"y": 0.55},{"x": 100,"y": 0.55}]|color=orange}}
|maxhealth=Strength and Vigor governs your Max Health.
Strength has 25% scaling, and Vigor has 75% scaling, which then get combined into a Sum and translated into MaxHealth.
<code> Sum = Strength * 0.25 + Vigor * 0.75</code>
0 Sum starts at 75 Max Health.
*0 -> 75
*0 to 10 = 3 each, up to 105
*10 to 50 = 2 each, up to 185
*50 to 75 = 1 each, up to 210
*75 to 100 = 0.5 each, up to 222.5
{{#widget:Chart|uniqueId=MaxHealth|data=[{"x": 0,"y": 75},{"x": 10,"y": 105},{"x": 50,"y": 185},{"x": 75,"y": 210},{"x": 100,"y": 222.5}]|color=orange}}
|memorycapacity=Knowledge governs your Memory Capacity.
|memorycapacity=Knowledge governs your Memory Capacity.


Line 271: Line 270:
*-300 -> -619%
*-300 -> -619%
*-300 to -3 = 2% each, up to -25%
*-300 to -3 = 2% each, up to -25%
*-3 to 22 = 1% each, up to 0%
*-3 to 20 = 1% each, up to -2%
*22 to 31 = 0.5% each, up to 4.5%
*20 to 30 = 0.5% each, up to 3%
*31 to 42 = 0.4% each, up to 8.9%
*30 to 45 = 0.4% each, up to 9%
*42 to 52 = 0.3% each, up to 11.9%
*45 to 65 = 0.3% each, up to 15%
*52 to 62 = 0.2% each, up to 13.9%
*65 to 85 = 0.25% each, up to 20%
*62 to 112 = 0.1% each, up to 18.9%
*85 to 170 = 0.2% each, up to 37%
*112 to 175 = 0.2% each, up to 31.5%
*170 to 300 = 0.15% each, up to 56.5%
*175 to 230 = 0.3% each, up to 48%
*300 to 353 = 0.1% each, up to 61.8%
*230 to 317 = 0.2% each, up to 65.4%
*353 to 500 = 0.05% each, up to 69.15%
*317 to 353 = 0.1% each, up to 69%
*353 to 368 = 0.05% each, up to 69.75%
*368 to 369 = 0.03% each, up to 69.78%
*369 to 370 = 0.07% each, up to 69.85%
*370 to 428 = 0.05% each, up to 72.75%
*428 to 429 = -0.075% each, up to 72.675%
*429 to 450 = 0.025% each, up to 73.2%
*450 to 500 = 0.02% each, up to 74.2%


{{#widget:Chart|uniqueId=PhysicalDamageReduction|data=[{"x": -300,"y": -6.19},{"x": -3,"y": -0.25},{"x": 22,"y": 0},{"x": 31,"y": 0.045},{"x": 42,"y": 0.089},{"x": 52,"y": 0.119},{"x": 62,"y": 0.139},{"x": 112,"y": 0.189},{"x": 175,"y": 0.315},{"x": 230,"y": 0.48},{"x": 317,"y": 0.654},{"x": 353,"y": 0.69},{"x": 368,"y": 0.6975},{"x": 369,"y": 0.6978},{"x": 370,"y": 0.6985},{"x": 428,"y": 0.7275},{"x": 429,"y": 0.72675},{"x": 450,"y": 0.732},{"x": 500,"y": 0.742}]|color=orange}}
{{#widget:Chart|uniqueId=PhysicalDamageReduction|data=[{"x": -300,"y": -6.19},{"x": -3,"y": -0.25},{"x": 20,"y": -0.02},{"x": 30,"y": 0.03},{"x": 45,"y": 0.09},{"x": 65,"y": 0.15},{"x": 85,"y": 0.2},{"x": 170,"y": 0.37},{"x": 300,"y": 0.565},{"x": 353,"y": 0.618},{"x": 500,"y": 0.6915}]|color=orange}}
|physicalpower=Strength governs your Physical Power.
|physicalpower=Strength governs your Physical Power.


Line 311: Line 302:
|regularinteractionspeed=Agility and Resourcefulness governs your Regular Interaction Speed.
|regularinteractionspeed=Agility and Resourcefulness governs your Regular Interaction Speed.


Agility has 40% scaling, and Resourcefulness has 60% scaling, which then get combined into a Sum and translated into RegularInteractionSpeed.
Agility gives 0.4 Regular Interaction Speed Rating, and Resourcefulness gives 0.6 Regular Interaction Speed Rating, which then get summed into a total Regular Interaction Speed Rating and finally converted into Regular Interaction Speed using the graph.


<code> Sum = Agility * 0.4 + Resourcefulness * 0.6</code>
<code> Regular Interaction Speed Rating = Agility * 0.4 + Resourcefulness * 0.6</code>




0 Sum starts at -26% Regular Interaction Speed.
0 Regular Interaction Speed Rating starts at -26% Regular Interaction Speed.
*0 -> -26%
*0 -> -26%
*0 to 7 = 2% each, up to -12%
*0 to 7 = 2% each, up to -12%
Line 353: Line 344:


Triple click to select all.
Triple click to select all.
Note: Some browsers will add an extra return carriage (line end) after the formula. Remove it before pasting for best results.
{{#switch:{{lc:{{{1|}}}}}
{{#switch:{{lc:{{{1|}}}}}
|actionspeed=<pre>A_{ctionSpeed}(S_{um})=\left\{0 \le S_{um}<10:-0.38+0.03\left|S_{um}-0\right|,10 \le S_{um}<13:-0.08+0.02\left|S_{um}-10\right|,13 \le S_{um}<25:-0.02+0.01\left|S_{um}-13\right|,25 \le S_{um}<41:0.1+0.015\left|S_{um}-25\right|,41 \le S_{um}<50:0.34+0.01\left|S_{um}-41\right|,50 \le S_{um}<100:0.43+0.005\left|S_{um}-50\right|\right\}</pre>
|actionspeed=<pre>A_{ctionSpeed}(S_{um})=\left\{0 \le S_{um}<10:-0.38+0.03\left|S_{um}-0\right|,10 \le S_{um}<13:-0.08+0.02\left|S_{um}-10\right|,13 \le S_{um}<25:-0.02+0.01\left|S_{um}-13\right|,25 \le S_{um}<41:0.1+0.015\left|S_{um}-25\right|,41 \le S_{um}<50:0.34+0.01\left|S_{um}-41\right|,50 \le S_{um}<100:0.43+0.005\left|S_{um}-50\right|\right\}</pre>
|basehealth=<pre>B_{aseHealth}(S_{um})=\left\{0 \le S_{um}<10:60+3\left|S_{um}-0\right|,10 \le S_{um}<50:90+2\left|S_{um}-10\right|,50 \le S_{um}<75:170+1\left|S_{um}-50\right|,75 \le S_{um}<100:195+0.5\left|S_{um}-75\right|\right\}</pre>
|buffduration=<pre>B_{uffDuration}(W_{ill})=\left\{0 \le W_{ill}<5:-0.8+0.1\left|W_{ill}-0\right|,5 \le W_{ill}<7:-0.3+0.05\left|W_{ill}-5\right|,7 \le W_{ill}<11:-0.2+0.03\left|W_{ill}-7\right|,11 \le W_{ill}<15:-0.08+0.02\left|W_{ill}-11\right|,15 \le W_{ill}<50:0+0.01\left|W_{ill}-15\right|,50 \le W_{ill}<100:0.35+0.005\left|W_{ill}-50\right|\right\}</pre>
|buffduration=<pre>B_{uffDuration}(W_{ill})=\left\{0 \le W_{ill}<5:-0.8+0.1\left|W_{ill}-0\right|,5 \le W_{ill}<7:-0.3+0.05\left|W_{ill}-5\right|,7 \le W_{ill}<11:-0.2+0.03\left|W_{ill}-7\right|,11 \le W_{ill}<15:-0.08+0.02\left|W_{ill}-11\right|,15 \le W_{ill}<50:0+0.01\left|W_{ill}-15\right|,50 \le W_{ill}<100:0.35+0.005\left|W_{ill}-50\right|\right\}</pre>
|cooldownreduction=<pre>C_{ooldownReduction}(R_{esourcefulness})=\left\{0 \le R_{esourcefulness}<20:-0.3+0.02\left|R_{esourcefulness}-0\right|,20 \le R_{esourcefulness}<50:0.1+0.01\left|R_{esourcefulness}-20\right|,50 \le R_{esourcefulness}<100:0.4+0.005\left|R_{esourcefulness}-50\right|\right\}</pre>
|cooldownreduction=<pre>C_{ooldownReduction}(R_{esourcefulness})=\left\{0 \le R_{esourcefulness}<20:-0.3+0.02\left|R_{esourcefulness}-0\right|,20 \le R_{esourcefulness}<50:0.1+0.01\left|R_{esourcefulness}-20\right|,50 \le R_{esourcefulness}<100:0.4+0.005\left|R_{esourcefulness}-50\right|\right\}</pre>
Line 368: Line 361:
|luckgrade06=<pre>L_{uckGrade06}(L_{uckGrade})=\left\{0 \le L_{uckGrade}<6:1+0.013\left|L_{uckGrade}-0\right|,6 \le L_{uckGrade}<7:1.078+0.012\left|L_{uckGrade}-6\right|,7 \le L_{uckGrade}<11:1.09+0.013\left|L_{uckGrade}-7\right|,11 \le L_{uckGrade}<12:1.142+0.012\left|L_{uckGrade}-11\right|,12 \le L_{uckGrade}<14:1.154+0.013\left|L_{uckGrade}-12\right|,14 \le L_{uckGrade}<15:1.18+0.012\left|L_{uckGrade}-14\right|,15 \le L_{uckGrade}<16:1.192+0.013\left|L_{uckGrade}-15\right|,16 \le L_{uckGrade}<17:1.205+0.012\left|L_{uckGrade}-16\right|,17 \le L_{uckGrade}<19:1.217+0.013\left|L_{uckGrade}-17\right|,19 \le L_{uckGrade}<20:1.243+0.012\left|L_{uckGrade}-19\right|,20 \le L_{uckGrade}<21:1.255+0.013\left|L_{uckGrade}-20\right|,21 \le L_{uckGrade}<23:1.268+0.012\left|L_{uckGrade}-21\right|,23 \le L_{uckGrade}<24:1.292+0.013\left|L_{uckGrade}-23\right|,24 \le L_{uckGrade}<25:1.305+0.012\left|L_{uckGrade}-24\right|,25 \le L_{uckGrade}<26:1.317+0.013\left|L_{uckGrade}-25\right|,26 \le L_{uckGrade}<29:1.33+0.012\left|L_{uckGrade}-26\right|,29 \le L_{uckGrade}<30:1.366+0.013\left|L_{uckGrade}-29\right|,30 \le L_{uckGrade}<34:1.379+0.012\left|L_{uckGrade}-30\right|,34 \le L_{uckGrade}<35:1.427+0.013\left|L_{uckGrade}-34\right|,35 \le L_{uckGrade}<43:1.44+0.012\left|L_{uckGrade}-35\right|,43 \le L_{uckGrade}<44:1.536+0.011\left|L_{uckGrade}-43\right|,44 \le L_{uckGrade}<48:1.547+0.012\left|L_{uckGrade}-44\right|,48 \le L_{uckGrade}<49:1.595+0.011\left|L_{uckGrade}-48\right|,49 \le L_{uckGrade}<52:1.606+0.012\left|L_{uckGrade}-49\right|,52 \le L_{uckGrade}<53:1.642+0.011\left|L_{uckGrade}-52\right|,53 \le L_{uckGrade}<54:1.653+0.012\left|L_{uckGrade}-53\right|,54 \le L_{uckGrade}<55:1.665+0.011\left|L_{uckGrade}-54\right|,55 \le L_{uckGrade}<57:1.676+0.012\left|L_{uckGrade}-55\right|,57 \le L_{uckGrade}<58:1.7+0.011\left|L_{uckGrade}-57\right|,58 \le L_{uckGrade}<59:1.711+0.012\left|L_{uckGrade}-58\right|,59 \le L_{uckGrade}<61:1.723+0.011\left|L_{uckGrade}-59\right|,61 \le L_{uckGrade}<62:1.745+0.012\left|L_{uckGrade}-61\right|,62 \le L_{uckGrade}<63:1.757+0.011\left|L_{uckGrade}-62\right|,63 \le L_{uckGrade}<64:1.768+0.012\left|L_{uckGrade}-63\right|,64 \le L_{uckGrade}<66:1.78+0.011\left|L_{uckGrade}-64\right|,66 \le L_{uckGrade}<67:1.802+0.012\left|L_{uckGrade}-66\right|,67 \le L_{uckGrade}<71:1.814+0.011\left|L_{uckGrade}-67\right|,71 \le L_{uckGrade}<72:1.858+0.012\left|L_{uckGrade}-71\right|,72 \le L_{uckGrade}<83:1.87+0.011\left|L_{uckGrade}-72\right|,83 \le L_{uckGrade}<84:1.991+0.01\left|L_{uckGrade}-83\right|,84 \le L_{uckGrade}<87:2.001+0.011\left|L_{uckGrade}-84\right|,87 \le L_{uckGrade}<88:2.034+0.01\left|L_{uckGrade}-87\right|,88 \le L_{uckGrade}<91:2.044+0.011\left|L_{uckGrade}-88\right|,91 \le L_{uckGrade}<92:2.077+0.01\left|L_{uckGrade}-91\right|,92 \le L_{uckGrade}<93:2.087+0.011\left|L_{uckGrade}-92\right|,93 \le L_{uckGrade}<94:2.098+0.01\left|L_{uckGrade}-93\right|,94 \le L_{uckGrade}<95:2.108+0.011\left|L_{uckGrade}-94\right|,95 \le L_{uckGrade}<96:2.119+0.01\left|L_{uckGrade}-95\right|,96 \le L_{uckGrade}<97:2.129+0.011\left|L_{uckGrade}-96\right|,97 \le L_{uckGrade}<98:2.14+0.01\left|L_{uckGrade}-97\right|,98 \le L_{uckGrade}<99:2.15+0.011\left|L_{uckGrade}-98\right|,99 \le L_{uckGrade}<100:2.161+0.01\left|L_{uckGrade}-99\right|,100 \le L_{uckGrade}<101:2.171+0.011\left|L_{uckGrade}-100\right|,101 \le L_{uckGrade}<103:2.182+0.01\left|L_{uckGrade}-101\right|,103 \le L_{uckGrade}<104:2.202+0.011\left|L_{uckGrade}-103\right|,104 \le L_{uckGrade}<106:2.213+0.01\left|L_{uckGrade}-104\right|,106 \le L_{uckGrade}<107:2.233+0.011\left|L_{uckGrade}-106\right|,107 \le L_{uckGrade}<113:2.244+0.01\left|L_{uckGrade}-107\right|,113 \le L_{uckGrade}<114:2.304+0.011\left|L_{uckGrade}-113\right|,114 \le L_{uckGrade}<118:2.315+0.01\left|L_{uckGrade}-114\right|,118 \le L_{uckGrade}<119:2.355+0.009\left|L_{uckGrade}-118\right|,119 \le L_{uckGrade}<125:2.364+0.01\left|L_{uckGrade}-119\right|,125 \le L_{uckGrade}<126:2.424+0.009\left|L_{uckGrade}-125\right|,126 \le L_{uckGrade}<128:2.433+0.01\left|L_{uckGrade}-126\right|,128 \le L_{uckGrade}<129:2.453+0.009\left|L_{uckGrade}-128\right|,129 \le L_{uckGrade}<131:2.462+0.01\left|L_{uckGrade}-129\right|,131 \le L_{uckGrade}<132:2.482+0.009\left|L_{uckGrade}-131\right|,132 \le L_{uckGrade}<133:2.491+0.01\left|L_{uckGrade}-132\right|,133 \le L_{uckGrade}<134:2.501+0.009\left|L_{uckGrade}-133\right|,134 \le L_{uckGrade}<135:2.51+0.01\left|L_{uckGrade}-134\right|,135 \le L_{uckGrade}<136:2.52+0.009\left|L_{uckGrade}-135\right|,136 \le L_{uckGrade}<137:2.529+0.01\left|L_{uckGrade}-136\right|,137 \le L_{uckGrade}<138:2.539+0.009\left|L_{uckGrade}-137\right|,138 \le L_{uckGrade}<139:2.548+0.01\left|L_{uckGrade}-138\right|,139 \le L_{uckGrade}<141:2.558+0.009\left|L_{uckGrade}-139\right|,141 \le L_{uckGrade}<142:2.576+0.01\left|L_{uckGrade}-141\right|,142 \le L_{uckGrade}<144:2.586+0.009\left|L_{uckGrade}-142\right|,144 \le L_{uckGrade}<145:2.604+0.01\left|L_{uckGrade}-144\right|,145 \le L_{uckGrade}<150:2.614+0.009\left|L_{uckGrade}-145\right|,150 \le L_{uckGrade}<151:2.659+0.01\left|L_{uckGrade}-150\right|,151 \le L_{uckGrade}<158:2.669+0.009\left|L_{uckGrade}-151\right|,158 \le L_{uckGrade}<159:2.732+0.008\left|L_{uckGrade}-158\right|,159 \le L_{uckGrade}<163:2.74+0.009\left|L_{uckGrade}-159\right|,163 \le L_{uckGrade}<164:2.776+0.008\left|L_{uckGrade}-163\right|,164 \le L_{uckGrade}<167:2.784+0.009\left|L_{uckGrade}-164\right|,167 \le L_{uckGrade}<168:2.811+0.008\left|L_{uckGrade}-167\right|,168 \le L_{uckGrade}<170:2.819+0.009\left|L_{uckGrade}-168\right|,170 \le L_{uckGrade}<171:2.837+0.008\left|L_{uckGrade}-170\right|,171 \le L_{uckGrade}<172:2.845+0.009\left|L_{uckGrade}-171\right|,172 \le L_{uckGrade}<173:2.854+0.008\left|L_{uckGrade}-172\right|,173 \le L_{uckGrade}<174:2.862+0.009\left|L_{uckGrade}-173\right|,174 \le L_{uckGrade}<175:2.871+0.008\left|L_{uckGrade}-174\right|,175 \le L_{uckGrade}<176:2.879+0.009\left|L_{uckGrade}-175\right|,176 \le L_{uckGrade}<178:2.888+0.008\left|L_{uckGrade}-176\right|,178 \le L_{uckGrade}<179:2.904+0.009\left|L_{uckGrade}-178\right|,179 \le L_{uckGrade}<181:2.913+0.008\left|L_{uckGrade}-179\right|,181 \le L_{uckGrade}<182:2.929+0.009\left|L_{uckGrade}-181\right|,182 \le L_{uckGrade}<185:2.938+0.008\left|L_{uckGrade}-182\right|,185 \le L_{uckGrade}<186:2.962+0.009\left|L_{uckGrade}-185\right|,186 \le L_{uckGrade}<200:2.971+0.008\left|L_{uckGrade}-186\right|,200 \le L_{uckGrade}<201:3.083+0.007\left|L_{uckGrade}-200\right|,201 \le L_{uckGrade}<204:3.09+0.008\left|L_{uckGrade}-201\right|,204 \le L_{uckGrade}<205:3.114+0.007\left|L_{uckGrade}-204\right|,205 \le L_{uckGrade}<207:3.121+0.008\left|L_{uckGrade}-205\right|,207 \le L_{uckGrade}<208:3.137+0.007\left|L_{uckGrade}-207\right|,208 \le L_{uckGrade}<209:3.144+0.008\left|L_{uckGrade}-208\right|,209 \le L_{uckGrade}<210:3.152+0.007\left|L_{uckGrade}-209\right|,210 \le L_{uckGrade}<211:3.159+0.008\left|L_{uckGrade}-210\right|,211 \le L_{uckGrade}<212:3.167+0.007\left|L_{uckGrade}-211\right|,212 \le L_{uckGrade}<213:3.174+0.008\left|L_{uckGrade}-212\right|,213 \le L_{uckGrade}<214:3.182+0.007\left|L_{uckGrade}-213\right|,214 \le L_{uckGrade}<215:3.189+0.008\left|L_{uckGrade}-214\right|,215 \le L_{uckGrade}<216:3.197+0.007\left|L_{uckGrade}-215\right|,216 \le L_{uckGrade}<217:3.204+0.008\left|L_{uckGrade}-216\right|,217 \le L_{uckGrade}<219:3.212+0.007\left|L_{uckGrade}-217\right|,219 \le L_{uckGrade}<220:3.226+0.008\left|L_{uckGrade}-219\right|,220 \le L_{uckGrade}<223:3.234+0.007\left|L_{uckGrade}-220\right|,223 \le L_{uckGrade}<224:3.255+0.008\left|L_{uckGrade}-223\right|,224 \le L_{uckGrade}<239:3.263+0.007\left|L_{uckGrade}-224\right|,239 \le L_{uckGrade}<240:3.368+0.006\left|L_{uckGrade}-239\right|,240 \le L_{uckGrade}<243:3.374+0.007\left|L_{uckGrade}-240\right|,243 \le L_{uckGrade}<244:3.395+0.006\left|L_{uckGrade}-243\right|,244 \le L_{uckGrade}<245:3.401+0.007\left|L_{uckGrade}-244\right|,245 \le L_{uckGrade}<246:3.408+0.006\left|L_{uckGrade}-245\right|,246 \le L_{uckGrade}<248:3.414+0.007\left|L_{uckGrade}-246\right|,248 \le L_{uckGrade}<249:3.428+0.006\left|L_{uckGrade}-248\right|,249 \le L_{uckGrade}<250:3.434+0.007\left|L_{uckGrade}-249\right|,250 \le L_{uckGrade}<251:3.441+0.006\left|L_{uckGrade}-250\right|,251 \le L_{uckGrade}<252:3.447+0.007\left|L_{uckGrade}-251\right|,252 \le L_{uckGrade}<253:3.454+0.006\left|L_{uckGrade}-252\right|,253 \le L_{uckGrade}<254:3.46+0.007\left|L_{uckGrade}-253\right|,254 \le L_{uckGrade}<256:3.467+0.006\left|L_{uckGrade}-254\right|,256 \le L_{uckGrade}<257:3.479+0.007\left|L_{uckGrade}-256\right|,257 \le L_{uckGrade}<259:3.486+0.006\left|L_{uckGrade}-257\right|,259 \le L_{uckGrade}<260:3.498+0.007\left|L_{uckGrade}-259\right|,260 \le L_{uckGrade}<264:3.505+0.006\left|L_{uckGrade}-260\right|,264 \le L_{uckGrade}<265:3.529+0.007\left|L_{uckGrade}-264\right|,265 \le L_{uckGrade}<274:3.536+0.006\left|L_{uckGrade}-265\right|,274 \le L_{uckGrade}<275:3.59+0.005\left|L_{uckGrade}-274\right|,275 \le L_{uckGrade}<279:3.595+0.006\left|L_{uckGrade}-275\right|,279 \le L_{uckGrade}<280:3.619+0.005\left|L_{uckGrade}-279\right|,280 \le L_{uckGrade}<283:3.624+0.006\left|L_{uckGrade}-280\right|,283 \le L_{uckGrade}<284:3.642+0.005\left|L_{uckGrade}-283\right|,284 \le L_{uckGrade}<285:3.647+0.006\left|L_{uckGrade}-284\right|,285 \le L_{uckGrade}<286:3.653+0.005\left|L_{uckGrade}-285\right|,286 \le L_{uckGrade}<287:3.658+0.006\left|L_{uckGrade}-286\right|,287 \le L_{uckGrade}<288:3.664+0.005\left|L_{uckGrade}-287\right|,288 \le L_{uckGrade}<289:3.669+0.006\left|L_{uckGrade}-288\right|,289 \le L_{uckGrade}<290:3.675+0.005\left|L_{uckGrade}-289\right|,290 \le L_{uckGrade}<291:3.68+0.006\left|L_{uckGrade}-290\right|,291 \le L_{uckGrade}<292:3.686+0.005\left|L_{uckGrade}-291\right|,292 \le L_{uckGrade}<293:3.691+0.006\left|L_{uckGrade}-292\right|,293 \le L_{uckGrade}<294:3.697+0.005\left|L_{uckGrade}-293\right|,294 \le L_{uckGrade}<295:3.702+0.006\left|L_{uckGrade}-294\right|,295 \le L_{uckGrade}<298:3.708+0.005\left|L_{uckGrade}-295\right|,298 \le L_{uckGrade}<299:3.723+0.006\left|L_{uckGrade}-298\right|,299 \le L_{uckGrade}<303:3.729+0.005\left|L_{uckGrade}-299\right|,303 \le L_{uckGrade}<304:3.749+0.006\left|L_{uckGrade}-303\right|,304 \le L_{uckGrade}<312:3.755+0.005\left|L_{uckGrade}-304\right|,312 \le L_{uckGrade}<313:3.795+0.004\left|L_{uckGrade}-312\right|,313 \le L_{uckGrade}<318:3.799+0.005\left|L_{uckGrade}-313\right|,318 \le L_{uckGrade}<319:3.824+0.004\left|L_{uckGrade}-318\right|,319 \le L_{uckGrade}<321:3.828+0.005\left|L_{uckGrade}-319\right|,321 \le L_{uckGrade}<322:3.838+0.004\left|L_{uckGrade}-321\right|,322 \le L_{uckGrade}<324:3.842+0.005\left|L_{uckGrade}-322\right|,324 \le L_{uckGrade}<325:3.852+0.004\left|L_{uckGrade}-324\right|,325 \le L_{uckGrade}<326:3.856+0.005\left|L_{uckGrade}-325\right|,326 \le L_{uckGrade}<327:3.861+0.004\left|L_{uckGrade}-326\right|,327 \le L_{uckGrade}<328:3.865+0.005\left|L_{uckGrade}-327\right|,328 \le L_{uckGrade}<329:3.87+0.004\left|L_{uckGrade}-328\right|,329 \le L_{uckGrade}<330:3.874+0.005\left|L_{uckGrade}-329\right|,330 \le L_{uckGrade}<332:3.879+0.004\left|L_{uckGrade}-330\right|,332 \le L_{uckGrade}<333:3.887+0.005\left|L_{uckGrade}-332\right|,333 \le L_{uckGrade}<335:3.892+0.004\left|L_{uckGrade}-333\right|,335 \le L_{uckGrade}<336:3.9+0.005\left|L_{uckGrade}-335\right|,336 \le L_{uckGrade}<339:3.905+0.004\left|L_{uckGrade}-336\right|,339 \le L_{uckGrade}<340:3.917+0.005\left|L_{uckGrade}-339\right|,340 \le L_{uckGrade}<353:3.922+0.004\left|L_{uckGrade}-340\right|,353 \le L_{uckGrade}<354:3.974+0.003\left|L_{uckGrade}-353\right|,354 \le L_{uckGrade}<358:3.977+0.004\left|L_{uckGrade}-354\right|,358 \le L_{uckGrade}<359:3.993+0.003\left|L_{uckGrade}-358\right|,359 \le L_{uckGrade}<361:3.996+0.004\left|L_{uckGrade}-359\right|,361 \le L_{uckGrade}<362:4.004+0.003\left|L_{uckGrade}-361\right|,362 \le L_{uckGrade}<363:4.007+0.004\left|L_{uckGrade}-362\right|,363 \le L_{uckGrade}<364:4.011+0.003\left|L_{uckGrade}-363\right|,364 \le L_{uckGrade}<365:4.014+0.004\left|L_{uckGrade}-364\right|,365 \le L_{uckGrade}<366:4.018+0.003\left|L_{uckGrade}-365\right|,366 \le L_{uckGrade}<367:4.021+0.004\left|L_{uckGrade}-366\right|,367 \le L_{uckGrade}<368:4.025+0.003\left|L_{uckGrade}-367\right|,368 \le L_{uckGrade}<369:4.028+0.004\left|L_{uckGrade}-368\right|,369 \le L_{uckGrade}<371:4.032+0.003\left|L_{uckGrade}-369\right|,371 \le L_{uckGrade}<372:4.038+0.004\left|L_{uckGrade}-371\right|,372 \le L_{uckGrade}<374:4.042+0.003\left|L_{uckGrade}-372\right|,374 \le L_{uckGrade}<375:4.048+0.004\left|L_{uckGrade}-374\right|,375 \le L_{uckGrade}<378:4.052+0.003\left|L_{uckGrade}-375\right|,378 \le L_{uckGrade}<379:4.061+0.004\left|L_{uckGrade}-378\right|,379 \le L_{uckGrade}<391:4.065+0.003\left|L_{uckGrade}-379\right|,391 \le L_{uckGrade}<392:4.101+0.002\left|L_{uckGrade}-391\right|,392 \le L_{uckGrade}<396:4.103+0.003\left|L_{uckGrade}-392\right|,396 \le L_{uckGrade}<397:4.115+0.002\left|L_{uckGrade}-396\right|,397 \le L_{uckGrade}<399:4.117+0.003\left|L_{uckGrade}-397\right|,399 \le L_{uckGrade}<400:4.123+0.002\left|L_{uckGrade}-399\right|,400 \le L_{uckGrade}<401:4.125+0.003\left|L_{uckGrade}-400\right|,401 \le L_{uckGrade}<402:4.128+0.002\left|L_{uckGrade}-401\right|,402 \le L_{uckGrade}<403:4.13+0.003\left|L_{uckGrade}-402\right|,403 \le L_{uckGrade}<404:4.133+0.002\left|L_{uckGrade}-403\right|,404 \le L_{uckGrade}<405:4.135+0.003\left|L_{uckGrade}-404\right|,405 \le L_{uckGrade}<406:4.138+0.002\left|L_{uckGrade}-405\right|,406 \le L_{uckGrade}<407:4.14+0.003\left|L_{uckGrade}-406\right|,407 \le L_{uckGrade}<408:4.143+0.002\left|L_{uckGrade}-407\right|,408 \le L_{uckGrade}<409:4.145+0.003\left|L_{uckGrade}-408\right|,409 \le L_{uckGrade}<411:4.148+0.002\left|L_{uckGrade}-409\right|,411 \le L_{uckGrade}<412:4.152+0.003\left|L_{uckGrade}-411\right|,412 \le L_{uckGrade}<415:4.155+0.002\left|L_{uckGrade}-412\right|,415 \le L_{uckGrade}<416:4.161+0.003\left|L_{uckGrade}-415\right|,416 \le L_{uckGrade}<432:4.164+0.002\left|L_{uckGrade}-416\right|,432 \le L_{uckGrade}<433:4.196+0.001\left|L_{uckGrade}-432\right|,433 \le L_{uckGrade}<435:4.197+0.002\left|L_{uckGrade}-433\right|,435 \le L_{uckGrade}<436:4.201+0.001\left|L_{uckGrade}-435\right|,436 \le L_{uckGrade}<438:4.202+0.002\left|L_{uckGrade}-436\right|,438 \le L_{uckGrade}<439:4.206+0.001\left|L_{uckGrade}-438\right|,439 \le L_{uckGrade}<440:4.207+0.002\left|L_{uckGrade}-439\right|,440 \le L_{uckGrade}<441:4.209+0.001\left|L_{uckGrade}-440\right|,441 \le L_{uckGrade}<443:4.21+0.002\left|L_{uckGrade}-441\right|,443 \le L_{uckGrade}<445:4.214+0.001\left|L_{uckGrade}-443\right|,445 \le L_{uckGrade}<446:4.216+0.002\left|L_{uckGrade}-445\right|,446 \le L_{uckGrade}<447:4.218+0.001\left|L_{uckGrade}-446\right|,447 \le L_{uckGrade}<448:4.219+0.002\left|L_{uckGrade}-447\right|,448 \le L_{uckGrade}<450:4.221+0.001\left|L_{uckGrade}-448\right|,450 \le L_{uckGrade}<451:4.223+0.002\left|L_{uckGrade}-450\right|,451 \le L_{uckGrade}<454:4.225+0.001\left|L_{uckGrade}-451\right|,454 \le L_{uckGrade}<455:4.228+0.002\left|L_{uckGrade}-454\right|,455 \le L_{uckGrade}<469:4.23+0.001\left|L_{uckGrade}-455\right|,469 \le L_{uckGrade}<470:4.244+0\left|L_{uckGrade}-469\right|,470 \le L_{uckGrade}<473:4.244+0.001\left|L_{uckGrade}-470\right|,473 \le L_{uckGrade}<474:4.247+0\left|L_{uckGrade}-473\right|,474 \le L_{uckGrade}<476:4.247+0.001\left|L_{uckGrade}-474\right|,476 \le L_{uckGrade}<477:4.249+0\left|L_{uckGrade}-476\right|,477 \le L_{uckGrade}<478:4.249+0.001\left|L_{uckGrade}-477\right|,478 \le L_{uckGrade}<479:4.25+0\left|L_{uckGrade}-478\right|,479 \le L_{uckGrade}<481:4.25+0.001\left|L_{uckGrade}-479\right|,481 \le L_{uckGrade}<482:4.252+0\left|L_{uckGrade}-481\right|,482 \le L_{uckGrade}<483:4.252+0.001\left|L_{uckGrade}-482\right|,483 \le L_{uckGrade}<485:4.253+0\left|L_{uckGrade}-483\right|,485 \le L_{uckGrade}<486:4.253+0.001\left|L_{uckGrade}-485\right|,486 \le L_{uckGrade}<488:4.254+0\left|L_{uckGrade}-486\right|,488 \le L_{uckGrade}<489:4.254+0.001\left|L_{uckGrade}-488\right|,489 \le L_{uckGrade}<491:4.255+0\left|L_{uckGrade}-489\right|,491 \le L_{uckGrade}<492:4.255+0.001\left|L_{uckGrade}-491\right|,492 \le L_{uckGrade}<499:4.256+0\left|L_{uckGrade}-492\right|,499 \le L_{uckGrade}<500:4.256+0.001\left|L_{uckGrade}-499\right|\right\}</pre>
|luckgrade06=<pre>L_{uckGrade06}(L_{uckGrade})=\left\{0 \le L_{uckGrade}<6:1+0.013\left|L_{uckGrade}-0\right|,6 \le L_{uckGrade}<7:1.078+0.012\left|L_{uckGrade}-6\right|,7 \le L_{uckGrade}<11:1.09+0.013\left|L_{uckGrade}-7\right|,11 \le L_{uckGrade}<12:1.142+0.012\left|L_{uckGrade}-11\right|,12 \le L_{uckGrade}<14:1.154+0.013\left|L_{uckGrade}-12\right|,14 \le L_{uckGrade}<15:1.18+0.012\left|L_{uckGrade}-14\right|,15 \le L_{uckGrade}<16:1.192+0.013\left|L_{uckGrade}-15\right|,16 \le L_{uckGrade}<17:1.205+0.012\left|L_{uckGrade}-16\right|,17 \le L_{uckGrade}<19:1.217+0.013\left|L_{uckGrade}-17\right|,19 \le L_{uckGrade}<20:1.243+0.012\left|L_{uckGrade}-19\right|,20 \le L_{uckGrade}<21:1.255+0.013\left|L_{uckGrade}-20\right|,21 \le L_{uckGrade}<23:1.268+0.012\left|L_{uckGrade}-21\right|,23 \le L_{uckGrade}<24:1.292+0.013\left|L_{uckGrade}-23\right|,24 \le L_{uckGrade}<25:1.305+0.012\left|L_{uckGrade}-24\right|,25 \le L_{uckGrade}<26:1.317+0.013\left|L_{uckGrade}-25\right|,26 \le L_{uckGrade}<29:1.33+0.012\left|L_{uckGrade}-26\right|,29 \le L_{uckGrade}<30:1.366+0.013\left|L_{uckGrade}-29\right|,30 \le L_{uckGrade}<34:1.379+0.012\left|L_{uckGrade}-30\right|,34 \le L_{uckGrade}<35:1.427+0.013\left|L_{uckGrade}-34\right|,35 \le L_{uckGrade}<43:1.44+0.012\left|L_{uckGrade}-35\right|,43 \le L_{uckGrade}<44:1.536+0.011\left|L_{uckGrade}-43\right|,44 \le L_{uckGrade}<48:1.547+0.012\left|L_{uckGrade}-44\right|,48 \le L_{uckGrade}<49:1.595+0.011\left|L_{uckGrade}-48\right|,49 \le L_{uckGrade}<52:1.606+0.012\left|L_{uckGrade}-49\right|,52 \le L_{uckGrade}<53:1.642+0.011\left|L_{uckGrade}-52\right|,53 \le L_{uckGrade}<54:1.653+0.012\left|L_{uckGrade}-53\right|,54 \le L_{uckGrade}<55:1.665+0.011\left|L_{uckGrade}-54\right|,55 \le L_{uckGrade}<57:1.676+0.012\left|L_{uckGrade}-55\right|,57 \le L_{uckGrade}<58:1.7+0.011\left|L_{uckGrade}-57\right|,58 \le L_{uckGrade}<59:1.711+0.012\left|L_{uckGrade}-58\right|,59 \le L_{uckGrade}<61:1.723+0.011\left|L_{uckGrade}-59\right|,61 \le L_{uckGrade}<62:1.745+0.012\left|L_{uckGrade}-61\right|,62 \le L_{uckGrade}<63:1.757+0.011\left|L_{uckGrade}-62\right|,63 \le L_{uckGrade}<64:1.768+0.012\left|L_{uckGrade}-63\right|,64 \le L_{uckGrade}<66:1.78+0.011\left|L_{uckGrade}-64\right|,66 \le L_{uckGrade}<67:1.802+0.012\left|L_{uckGrade}-66\right|,67 \le L_{uckGrade}<71:1.814+0.011\left|L_{uckGrade}-67\right|,71 \le L_{uckGrade}<72:1.858+0.012\left|L_{uckGrade}-71\right|,72 \le L_{uckGrade}<83:1.87+0.011\left|L_{uckGrade}-72\right|,83 \le L_{uckGrade}<84:1.991+0.01\left|L_{uckGrade}-83\right|,84 \le L_{uckGrade}<87:2.001+0.011\left|L_{uckGrade}-84\right|,87 \le L_{uckGrade}<88:2.034+0.01\left|L_{uckGrade}-87\right|,88 \le L_{uckGrade}<91:2.044+0.011\left|L_{uckGrade}-88\right|,91 \le L_{uckGrade}<92:2.077+0.01\left|L_{uckGrade}-91\right|,92 \le L_{uckGrade}<93:2.087+0.011\left|L_{uckGrade}-92\right|,93 \le L_{uckGrade}<94:2.098+0.01\left|L_{uckGrade}-93\right|,94 \le L_{uckGrade}<95:2.108+0.011\left|L_{uckGrade}-94\right|,95 \le L_{uckGrade}<96:2.119+0.01\left|L_{uckGrade}-95\right|,96 \le L_{uckGrade}<97:2.129+0.011\left|L_{uckGrade}-96\right|,97 \le L_{uckGrade}<98:2.14+0.01\left|L_{uckGrade}-97\right|,98 \le L_{uckGrade}<99:2.15+0.011\left|L_{uckGrade}-98\right|,99 \le L_{uckGrade}<100:2.161+0.01\left|L_{uckGrade}-99\right|,100 \le L_{uckGrade}<101:2.171+0.011\left|L_{uckGrade}-100\right|,101 \le L_{uckGrade}<103:2.182+0.01\left|L_{uckGrade}-101\right|,103 \le L_{uckGrade}<104:2.202+0.011\left|L_{uckGrade}-103\right|,104 \le L_{uckGrade}<106:2.213+0.01\left|L_{uckGrade}-104\right|,106 \le L_{uckGrade}<107:2.233+0.011\left|L_{uckGrade}-106\right|,107 \le L_{uckGrade}<113:2.244+0.01\left|L_{uckGrade}-107\right|,113 \le L_{uckGrade}<114:2.304+0.011\left|L_{uckGrade}-113\right|,114 \le L_{uckGrade}<118:2.315+0.01\left|L_{uckGrade}-114\right|,118 \le L_{uckGrade}<119:2.355+0.009\left|L_{uckGrade}-118\right|,119 \le L_{uckGrade}<125:2.364+0.01\left|L_{uckGrade}-119\right|,125 \le L_{uckGrade}<126:2.424+0.009\left|L_{uckGrade}-125\right|,126 \le L_{uckGrade}<128:2.433+0.01\left|L_{uckGrade}-126\right|,128 \le L_{uckGrade}<129:2.453+0.009\left|L_{uckGrade}-128\right|,129 \le L_{uckGrade}<131:2.462+0.01\left|L_{uckGrade}-129\right|,131 \le L_{uckGrade}<132:2.482+0.009\left|L_{uckGrade}-131\right|,132 \le L_{uckGrade}<133:2.491+0.01\left|L_{uckGrade}-132\right|,133 \le L_{uckGrade}<134:2.501+0.009\left|L_{uckGrade}-133\right|,134 \le L_{uckGrade}<135:2.51+0.01\left|L_{uckGrade}-134\right|,135 \le L_{uckGrade}<136:2.52+0.009\left|L_{uckGrade}-135\right|,136 \le L_{uckGrade}<137:2.529+0.01\left|L_{uckGrade}-136\right|,137 \le L_{uckGrade}<138:2.539+0.009\left|L_{uckGrade}-137\right|,138 \le L_{uckGrade}<139:2.548+0.01\left|L_{uckGrade}-138\right|,139 \le L_{uckGrade}<141:2.558+0.009\left|L_{uckGrade}-139\right|,141 \le L_{uckGrade}<142:2.576+0.01\left|L_{uckGrade}-141\right|,142 \le L_{uckGrade}<144:2.586+0.009\left|L_{uckGrade}-142\right|,144 \le L_{uckGrade}<145:2.604+0.01\left|L_{uckGrade}-144\right|,145 \le L_{uckGrade}<150:2.614+0.009\left|L_{uckGrade}-145\right|,150 \le L_{uckGrade}<151:2.659+0.01\left|L_{uckGrade}-150\right|,151 \le L_{uckGrade}<158:2.669+0.009\left|L_{uckGrade}-151\right|,158 \le L_{uckGrade}<159:2.732+0.008\left|L_{uckGrade}-158\right|,159 \le L_{uckGrade}<163:2.74+0.009\left|L_{uckGrade}-159\right|,163 \le L_{uckGrade}<164:2.776+0.008\left|L_{uckGrade}-163\right|,164 \le L_{uckGrade}<167:2.784+0.009\left|L_{uckGrade}-164\right|,167 \le L_{uckGrade}<168:2.811+0.008\left|L_{uckGrade}-167\right|,168 \le L_{uckGrade}<170:2.819+0.009\left|L_{uckGrade}-168\right|,170 \le L_{uckGrade}<171:2.837+0.008\left|L_{uckGrade}-170\right|,171 \le L_{uckGrade}<172:2.845+0.009\left|L_{uckGrade}-171\right|,172 \le L_{uckGrade}<173:2.854+0.008\left|L_{uckGrade}-172\right|,173 \le L_{uckGrade}<174:2.862+0.009\left|L_{uckGrade}-173\right|,174 \le L_{uckGrade}<175:2.871+0.008\left|L_{uckGrade}-174\right|,175 \le L_{uckGrade}<176:2.879+0.009\left|L_{uckGrade}-175\right|,176 \le L_{uckGrade}<178:2.888+0.008\left|L_{uckGrade}-176\right|,178 \le L_{uckGrade}<179:2.904+0.009\left|L_{uckGrade}-178\right|,179 \le L_{uckGrade}<181:2.913+0.008\left|L_{uckGrade}-179\right|,181 \le L_{uckGrade}<182:2.929+0.009\left|L_{uckGrade}-181\right|,182 \le L_{uckGrade}<185:2.938+0.008\left|L_{uckGrade}-182\right|,185 \le L_{uckGrade}<186:2.962+0.009\left|L_{uckGrade}-185\right|,186 \le L_{uckGrade}<200:2.971+0.008\left|L_{uckGrade}-186\right|,200 \le L_{uckGrade}<201:3.083+0.007\left|L_{uckGrade}-200\right|,201 \le L_{uckGrade}<204:3.09+0.008\left|L_{uckGrade}-201\right|,204 \le L_{uckGrade}<205:3.114+0.007\left|L_{uckGrade}-204\right|,205 \le L_{uckGrade}<207:3.121+0.008\left|L_{uckGrade}-205\right|,207 \le L_{uckGrade}<208:3.137+0.007\left|L_{uckGrade}-207\right|,208 \le L_{uckGrade}<209:3.144+0.008\left|L_{uckGrade}-208\right|,209 \le L_{uckGrade}<210:3.152+0.007\left|L_{uckGrade}-209\right|,210 \le L_{uckGrade}<211:3.159+0.008\left|L_{uckGrade}-210\right|,211 \le L_{uckGrade}<212:3.167+0.007\left|L_{uckGrade}-211\right|,212 \le L_{uckGrade}<213:3.174+0.008\left|L_{uckGrade}-212\right|,213 \le L_{uckGrade}<214:3.182+0.007\left|L_{uckGrade}-213\right|,214 \le L_{uckGrade}<215:3.189+0.008\left|L_{uckGrade}-214\right|,215 \le L_{uckGrade}<216:3.197+0.007\left|L_{uckGrade}-215\right|,216 \le L_{uckGrade}<217:3.204+0.008\left|L_{uckGrade}-216\right|,217 \le L_{uckGrade}<219:3.212+0.007\left|L_{uckGrade}-217\right|,219 \le L_{uckGrade}<220:3.226+0.008\left|L_{uckGrade}-219\right|,220 \le L_{uckGrade}<223:3.234+0.007\left|L_{uckGrade}-220\right|,223 \le L_{uckGrade}<224:3.255+0.008\left|L_{uckGrade}-223\right|,224 \le L_{uckGrade}<239:3.263+0.007\left|L_{uckGrade}-224\right|,239 \le L_{uckGrade}<240:3.368+0.006\left|L_{uckGrade}-239\right|,240 \le L_{uckGrade}<243:3.374+0.007\left|L_{uckGrade}-240\right|,243 \le L_{uckGrade}<244:3.395+0.006\left|L_{uckGrade}-243\right|,244 \le L_{uckGrade}<245:3.401+0.007\left|L_{uckGrade}-244\right|,245 \le L_{uckGrade}<246:3.408+0.006\left|L_{uckGrade}-245\right|,246 \le L_{uckGrade}<248:3.414+0.007\left|L_{uckGrade}-246\right|,248 \le L_{uckGrade}<249:3.428+0.006\left|L_{uckGrade}-248\right|,249 \le L_{uckGrade}<250:3.434+0.007\left|L_{uckGrade}-249\right|,250 \le L_{uckGrade}<251:3.441+0.006\left|L_{uckGrade}-250\right|,251 \le L_{uckGrade}<252:3.447+0.007\left|L_{uckGrade}-251\right|,252 \le L_{uckGrade}<253:3.454+0.006\left|L_{uckGrade}-252\right|,253 \le L_{uckGrade}<254:3.46+0.007\left|L_{uckGrade}-253\right|,254 \le L_{uckGrade}<256:3.467+0.006\left|L_{uckGrade}-254\right|,256 \le L_{uckGrade}<257:3.479+0.007\left|L_{uckGrade}-256\right|,257 \le L_{uckGrade}<259:3.486+0.006\left|L_{uckGrade}-257\right|,259 \le L_{uckGrade}<260:3.498+0.007\left|L_{uckGrade}-259\right|,260 \le L_{uckGrade}<264:3.505+0.006\left|L_{uckGrade}-260\right|,264 \le L_{uckGrade}<265:3.529+0.007\left|L_{uckGrade}-264\right|,265 \le L_{uckGrade}<274:3.536+0.006\left|L_{uckGrade}-265\right|,274 \le L_{uckGrade}<275:3.59+0.005\left|L_{uckGrade}-274\right|,275 \le L_{uckGrade}<279:3.595+0.006\left|L_{uckGrade}-275\right|,279 \le L_{uckGrade}<280:3.619+0.005\left|L_{uckGrade}-279\right|,280 \le L_{uckGrade}<283:3.624+0.006\left|L_{uckGrade}-280\right|,283 \le L_{uckGrade}<284:3.642+0.005\left|L_{uckGrade}-283\right|,284 \le L_{uckGrade}<285:3.647+0.006\left|L_{uckGrade}-284\right|,285 \le L_{uckGrade}<286:3.653+0.005\left|L_{uckGrade}-285\right|,286 \le L_{uckGrade}<287:3.658+0.006\left|L_{uckGrade}-286\right|,287 \le L_{uckGrade}<288:3.664+0.005\left|L_{uckGrade}-287\right|,288 \le L_{uckGrade}<289:3.669+0.006\left|L_{uckGrade}-288\right|,289 \le L_{uckGrade}<290:3.675+0.005\left|L_{uckGrade}-289\right|,290 \le L_{uckGrade}<291:3.68+0.006\left|L_{uckGrade}-290\right|,291 \le L_{uckGrade}<292:3.686+0.005\left|L_{uckGrade}-291\right|,292 \le L_{uckGrade}<293:3.691+0.006\left|L_{uckGrade}-292\right|,293 \le L_{uckGrade}<294:3.697+0.005\left|L_{uckGrade}-293\right|,294 \le L_{uckGrade}<295:3.702+0.006\left|L_{uckGrade}-294\right|,295 \le L_{uckGrade}<298:3.708+0.005\left|L_{uckGrade}-295\right|,298 \le L_{uckGrade}<299:3.723+0.006\left|L_{uckGrade}-298\right|,299 \le L_{uckGrade}<303:3.729+0.005\left|L_{uckGrade}-299\right|,303 \le L_{uckGrade}<304:3.749+0.006\left|L_{uckGrade}-303\right|,304 \le L_{uckGrade}<312:3.755+0.005\left|L_{uckGrade}-304\right|,312 \le L_{uckGrade}<313:3.795+0.004\left|L_{uckGrade}-312\right|,313 \le L_{uckGrade}<318:3.799+0.005\left|L_{uckGrade}-313\right|,318 \le L_{uckGrade}<319:3.824+0.004\left|L_{uckGrade}-318\right|,319 \le L_{uckGrade}<321:3.828+0.005\left|L_{uckGrade}-319\right|,321 \le L_{uckGrade}<322:3.838+0.004\left|L_{uckGrade}-321\right|,322 \le L_{uckGrade}<324:3.842+0.005\left|L_{uckGrade}-322\right|,324 \le L_{uckGrade}<325:3.852+0.004\left|L_{uckGrade}-324\right|,325 \le L_{uckGrade}<326:3.856+0.005\left|L_{uckGrade}-325\right|,326 \le L_{uckGrade}<327:3.861+0.004\left|L_{uckGrade}-326\right|,327 \le L_{uckGrade}<328:3.865+0.005\left|L_{uckGrade}-327\right|,328 \le L_{uckGrade}<329:3.87+0.004\left|L_{uckGrade}-328\right|,329 \le L_{uckGrade}<330:3.874+0.005\left|L_{uckGrade}-329\right|,330 \le L_{uckGrade}<332:3.879+0.004\left|L_{uckGrade}-330\right|,332 \le L_{uckGrade}<333:3.887+0.005\left|L_{uckGrade}-332\right|,333 \le L_{uckGrade}<335:3.892+0.004\left|L_{uckGrade}-333\right|,335 \le L_{uckGrade}<336:3.9+0.005\left|L_{uckGrade}-335\right|,336 \le L_{uckGrade}<339:3.905+0.004\left|L_{uckGrade}-336\right|,339 \le L_{uckGrade}<340:3.917+0.005\left|L_{uckGrade}-339\right|,340 \le L_{uckGrade}<353:3.922+0.004\left|L_{uckGrade}-340\right|,353 \le L_{uckGrade}<354:3.974+0.003\left|L_{uckGrade}-353\right|,354 \le L_{uckGrade}<358:3.977+0.004\left|L_{uckGrade}-354\right|,358 \le L_{uckGrade}<359:3.993+0.003\left|L_{uckGrade}-358\right|,359 \le L_{uckGrade}<361:3.996+0.004\left|L_{uckGrade}-359\right|,361 \le L_{uckGrade}<362:4.004+0.003\left|L_{uckGrade}-361\right|,362 \le L_{uckGrade}<363:4.007+0.004\left|L_{uckGrade}-362\right|,363 \le L_{uckGrade}<364:4.011+0.003\left|L_{uckGrade}-363\right|,364 \le L_{uckGrade}<365:4.014+0.004\left|L_{uckGrade}-364\right|,365 \le L_{uckGrade}<366:4.018+0.003\left|L_{uckGrade}-365\right|,366 \le L_{uckGrade}<367:4.021+0.004\left|L_{uckGrade}-366\right|,367 \le L_{uckGrade}<368:4.025+0.003\left|L_{uckGrade}-367\right|,368 \le L_{uckGrade}<369:4.028+0.004\left|L_{uckGrade}-368\right|,369 \le L_{uckGrade}<371:4.032+0.003\left|L_{uckGrade}-369\right|,371 \le L_{uckGrade}<372:4.038+0.004\left|L_{uckGrade}-371\right|,372 \le L_{uckGrade}<374:4.042+0.003\left|L_{uckGrade}-372\right|,374 \le L_{uckGrade}<375:4.048+0.004\left|L_{uckGrade}-374\right|,375 \le L_{uckGrade}<378:4.052+0.003\left|L_{uckGrade}-375\right|,378 \le L_{uckGrade}<379:4.061+0.004\left|L_{uckGrade}-378\right|,379 \le L_{uckGrade}<391:4.065+0.003\left|L_{uckGrade}-379\right|,391 \le L_{uckGrade}<392:4.101+0.002\left|L_{uckGrade}-391\right|,392 \le L_{uckGrade}<396:4.103+0.003\left|L_{uckGrade}-392\right|,396 \le L_{uckGrade}<397:4.115+0.002\left|L_{uckGrade}-396\right|,397 \le L_{uckGrade}<399:4.117+0.003\left|L_{uckGrade}-397\right|,399 \le L_{uckGrade}<400:4.123+0.002\left|L_{uckGrade}-399\right|,400 \le L_{uckGrade}<401:4.125+0.003\left|L_{uckGrade}-400\right|,401 \le L_{uckGrade}<402:4.128+0.002\left|L_{uckGrade}-401\right|,402 \le L_{uckGrade}<403:4.13+0.003\left|L_{uckGrade}-402\right|,403 \le L_{uckGrade}<404:4.133+0.002\left|L_{uckGrade}-403\right|,404 \le L_{uckGrade}<405:4.135+0.003\left|L_{uckGrade}-404\right|,405 \le L_{uckGrade}<406:4.138+0.002\left|L_{uckGrade}-405\right|,406 \le L_{uckGrade}<407:4.14+0.003\left|L_{uckGrade}-406\right|,407 \le L_{uckGrade}<408:4.143+0.002\left|L_{uckGrade}-407\right|,408 \le L_{uckGrade}<409:4.145+0.003\left|L_{uckGrade}-408\right|,409 \le L_{uckGrade}<411:4.148+0.002\left|L_{uckGrade}-409\right|,411 \le L_{uckGrade}<412:4.152+0.003\left|L_{uckGrade}-411\right|,412 \le L_{uckGrade}<415:4.155+0.002\left|L_{uckGrade}-412\right|,415 \le L_{uckGrade}<416:4.161+0.003\left|L_{uckGrade}-415\right|,416 \le L_{uckGrade}<432:4.164+0.002\left|L_{uckGrade}-416\right|,432 \le L_{uckGrade}<433:4.196+0.001\left|L_{uckGrade}-432\right|,433 \le L_{uckGrade}<435:4.197+0.002\left|L_{uckGrade}-433\right|,435 \le L_{uckGrade}<436:4.201+0.001\left|L_{uckGrade}-435\right|,436 \le L_{uckGrade}<438:4.202+0.002\left|L_{uckGrade}-436\right|,438 \le L_{uckGrade}<439:4.206+0.001\left|L_{uckGrade}-438\right|,439 \le L_{uckGrade}<440:4.207+0.002\left|L_{uckGrade}-439\right|,440 \le L_{uckGrade}<441:4.209+0.001\left|L_{uckGrade}-440\right|,441 \le L_{uckGrade}<443:4.21+0.002\left|L_{uckGrade}-441\right|,443 \le L_{uckGrade}<445:4.214+0.001\left|L_{uckGrade}-443\right|,445 \le L_{uckGrade}<446:4.216+0.002\left|L_{uckGrade}-445\right|,446 \le L_{uckGrade}<447:4.218+0.001\left|L_{uckGrade}-446\right|,447 \le L_{uckGrade}<448:4.219+0.002\left|L_{uckGrade}-447\right|,448 \le L_{uckGrade}<450:4.221+0.001\left|L_{uckGrade}-448\right|,450 \le L_{uckGrade}<451:4.223+0.002\left|L_{uckGrade}-450\right|,451 \le L_{uckGrade}<454:4.225+0.001\left|L_{uckGrade}-451\right|,454 \le L_{uckGrade}<455:4.228+0.002\left|L_{uckGrade}-454\right|,455 \le L_{uckGrade}<469:4.23+0.001\left|L_{uckGrade}-455\right|,469 \le L_{uckGrade}<470:4.244+0\left|L_{uckGrade}-469\right|,470 \le L_{uckGrade}<473:4.244+0.001\left|L_{uckGrade}-470\right|,473 \le L_{uckGrade}<474:4.247+0\left|L_{uckGrade}-473\right|,474 \le L_{uckGrade}<476:4.247+0.001\left|L_{uckGrade}-474\right|,476 \le L_{uckGrade}<477:4.249+0\left|L_{uckGrade}-476\right|,477 \le L_{uckGrade}<478:4.249+0.001\left|L_{uckGrade}-477\right|,478 \le L_{uckGrade}<479:4.25+0\left|L_{uckGrade}-478\right|,479 \le L_{uckGrade}<481:4.25+0.001\left|L_{uckGrade}-479\right|,481 \le L_{uckGrade}<482:4.252+0\left|L_{uckGrade}-481\right|,482 \le L_{uckGrade}<483:4.252+0.001\left|L_{uckGrade}-482\right|,483 \le L_{uckGrade}<485:4.253+0\left|L_{uckGrade}-483\right|,485 \le L_{uckGrade}<486:4.253+0.001\left|L_{uckGrade}-485\right|,486 \le L_{uckGrade}<488:4.254+0\left|L_{uckGrade}-486\right|,488 \le L_{uckGrade}<489:4.254+0.001\left|L_{uckGrade}-488\right|,489 \le L_{uckGrade}<491:4.255+0\left|L_{uckGrade}-489\right|,491 \le L_{uckGrade}<492:4.255+0.001\left|L_{uckGrade}-491\right|,492 \le L_{uckGrade}<499:4.256+0\left|L_{uckGrade}-492\right|,499 \le L_{uckGrade}<500:4.256+0.001\left|L_{uckGrade}-499\right|\right\}</pre>
|luckgrade07=<pre>L_{uckGrade07}(L_{uckGrade})=\left\{0 \le L_{uckGrade}<1:1+0.014\left|L_{uckGrade}-0\right|,1 \le L_{uckGrade}<3:1.014+0.013\left|L_{uckGrade}-1\right|,3 \le L_{uckGrade}<4:1.04+0.014\left|L_{uckGrade}-3\right|,4 \le L_{uckGrade}<5:1.054+0.013\left|L_{uckGrade}-4\right|,5 \le L_{uckGrade}<6:1.067+0.014\left|L_{uckGrade}-5\right|,6 \le L_{uckGrade}<8:1.081+0.013\left|L_{uckGrade}-6\right|,8 \le L_{uckGrade}<9:1.107+0.014\left|L_{uckGrade}-8\right|,9 \le L_{uckGrade}<13:1.121+0.013\left|L_{uckGrade}-9\right|,13 \le L_{uckGrade}<14:1.173+0.014\left|L_{uckGrade}-13\right|,14 \le L_{uckGrade}<24:1.187+0.013\left|L_{uckGrade}-14\right|,24 \le L_{uckGrade}<25:1.317+0.012\left|L_{uckGrade}-24\right|,25 \le L_{uckGrade}<29:1.329+0.013\left|L_{uckGrade}-25\right|,29 \le L_{uckGrade}<30:1.381+0.012\left|L_{uckGrade}-29\right|,30 \le L_{uckGrade}<32:1.393+0.013\left|L_{uckGrade}-30\right|,32 \le L_{uckGrade}<33:1.419+0.012\left|L_{uckGrade}-32\right|,33 \le L_{uckGrade}<34:1.431+0.013\left|L_{uckGrade}-33\right|,34 \le L_{uckGrade}<35:1.444+0.012\left|L_{uckGrade}-34\right|,35 \le L_{uckGrade}<37:1.456+0.013\left|L_{uckGrade}-35\right|,37 \le L_{uckGrade}<39:1.482+0.012\left|L_{uckGrade}-37\right|,39 \le L_{uckGrade}<40:1.506+0.013\left|L_{uckGrade}-39\right|,40 \le L_{uckGrade}<41:1.519+0.012\left|L_{uckGrade}-40\right|,41 \le L_{uckGrade}<42:1.531+0.013\left|L_{uckGrade}-41\right|,42 \le L_{uckGrade}<44:1.544+0.012\left|L_{uckGrade}-42\right|,44 \le L_{uckGrade}<45:1.568+0.013\left|L_{uckGrade}-44\right|,45 \le L_{uckGrade}<47:1.581+0.012\left|L_{uckGrade}-45\right|,47 \le L_{uckGrade}<48:1.605+0.013\left|L_{uckGrade}-47\right|,48 \le L_{uckGrade}<64:1.618+0.012\left|L_{uckGrade}-48\right|,64 \le L_{uckGrade}<65:1.81+0.011\left|L_{uckGrade}-64\right|,65 \le L_{uckGrade}<67:1.821+0.012\left|L_{uckGrade}-65\right|,67 \le L_{uckGrade}<68:1.845+0.011\left|L_{uckGrade}-67\right|,68 \le L_{uckGrade}<70:1.856+0.012\left|L_{uckGrade}-68\right|,70 \le L_{uckGrade}<71:1.88+0.011\left|L_{uckGrade}-70\right|,71 \le L_{uckGrade}<73:1.891+0.012\left|L_{uckGrade}-71\right|,73 \le L_{uckGrade}<74:1.915+0.011\left|L_{uckGrade}-73\right|,74 \le L_{uckGrade}<75:1.926+0.012\left|L_{uckGrade}-74\right|,75 \le L_{uckGrade}<77:1.938+0.011\left|L_{uckGrade}-75\right|,77 \le L_{uckGrade}<78:1.96+0.012\left|L_{uckGrade}-77\right|,78 \le L_{uckGrade}<79:1.972+0.011\left|L_{uckGrade}-78\right|,79 \le L_{uckGrade}<80:1.983+0.012\left|L_{uckGrade}-79\right|,80 \le L_{uckGrade}<82:1.995+0.011\left|L_{uckGrade}-80\right|,82 \le L_{uckGrade}<83:2.017+0.012\left|L_{uckGrade}-82\right|,83 \le L_{uckGrade}<87:2.029+0.011\left|L_{uckGrade}-83\right|,87 \le L_{uckGrade}<88:2.073+0.012\left|L_{uckGrade}-87\right|,88 \le L_{uckGrade}<99:2.085+0.011\left|L_{uckGrade}-88\right|,99 \le L_{uckGrade}<100:2.206+0.01\left|L_{uckGrade}-99\right|,100 \le L_{uckGrade}<103:2.216+0.011\left|L_{uckGrade}-100\right|,103 \le L_{uckGrade}<104:2.249+0.01\left|L_{uckGrade}-103\right|,104 \le L_{uckGrade}<106:2.259+0.011\left|L_{uckGrade}-104\right|,106 \le L_{uckGrade}<107:2.281+0.01\left|L_{uckGrade}-106\right|,107 \le L_{uckGrade}<109:2.291+0.011\left|L_{uckGrade}-107\right|,109 \le L_{uckGrade}<110:2.313+0.01\left|L_{uckGrade}-109\right|,110 \le L_{uckGrade}<111:2.323+0.011\left|L_{uckGrade}-110\right|,111 \le L_{uckGrade}<112:2.334+0.01\left|L_{uckGrade}-111\right|,112 \le L_{uckGrade}<113:2.344+0.011\left|L_{uckGrade}-112\right|,113 \le L_{uckGrade}<114:2.355+0.01\left|L_{uckGrade}-113\right|,114 \le L_{uckGrade}<115:2.365+0.011\left|L_{uckGrade}-114\right|,115 \le L_{uckGrade}<117:2.376+0.01\left|L_{uckGrade}-115\right|,117 \le L_{uckGrade}<118:2.396+0.011\left|L_{uckGrade}-117\right|,118 \le L_{uckGrade}<121:2.407+0.01\left|L_{uckGrade}-118\right|,121 \le L_{uckGrade}<122:2.437+0.011\left|L_{uckGrade}-121\right|,122 \le L_{uckGrade}<127:2.448+0.01\left|L_{uckGrade}-122\right|,127 \le L_{uckGrade}<128:2.498+0.011\left|L_{uckGrade}-127\right|,128 \le L_{uckGrade}<132:2.509+0.01\left|L_{uckGrade}-128\right|,132 \le L_{uckGrade}<133:2.549+0.009\left|L_{uckGrade}-132\right|,133 \le L_{uckGrade}<139:2.558+0.01\left|L_{uckGrade}-133\right|,139 \le L_{uckGrade}<140:2.618+0.009\left|L_{uckGrade}-139\right|,140 \le L_{uckGrade}<142:2.627+0.01\left|L_{uckGrade}-140\right|,142 \le L_{uckGrade}<143:2.647+0.009\left|L_{uckGrade}-142\right|,143 \le L_{uckGrade}<145:2.656+0.01\left|L_{uckGrade}-143\right|,145 \le L_{uckGrade}<146:2.676+0.009\left|L_{uckGrade}-145\right|,146 \le L_{uckGrade}<147:2.685+0.01\left|L_{uckGrade}-146\right|,147 \le L_{uckGrade}<148:2.695+0.009\left|L_{uckGrade}-147\right|,148 \le L_{uckGrade}<149:2.704+0.01\left|L_{uckGrade}-148\right|,149 \le L_{uckGrade}<150:2.714+0.009\left|L_{uckGrade}-149\right|,150 \le L_{uckGrade}<151:2.723+0.01\left|L_{uckGrade}-150\right|,151 \le L_{uckGrade}<152:2.733+0.009\left|L_{uckGrade}-151\right|,152 \le L_{uckGrade}<153:2.742+0.01\left|L_{uckGrade}-152\right|,153 \le L_{uckGrade}<155:2.752+0.009\left|L_{uckGrade}-153\right|,155 \le L_{uckGrade}<156:2.77+0.01\left|L_{uckGrade}-155\right|,156 \le L_{uckGrade}<159:2.78+0.009\left|L_{uckGrade}-156\right|,159 \le L_{uckGrade}<160:2.807+0.01\left|L_{uckGrade}-159\right|,160 \le L_{uckGrade}<174:2.817+0.009\left|L_{uckGrade}-160\right|,174 \le L_{uckGrade}<175:2.943+0.008\left|L_{uckGrade}-174\right|,175 \le L_{uckGrade}<178:2.951+0.009\left|L_{uckGrade}-175\right|,178 \le L_{uckGrade}<179:2.978+0.008\left|L_{uckGrade}-178\right|,179 \le L_{uckGrade}<181:2.986+0.009\left|L_{uckGrade}-179\right|,181 \le L_{uckGrade}<182:3.004+0.008\left|L_{uckGrade}-181\right|,182 \le L_{uckGrade}<183:3.012+0.009\left|L_{uckGrade}-182\right|,183 \le L_{uckGrade}<184:3.021+0.008\left|L_{uckGrade}-183\right|,184 \le L_{uckGrade}<185:3.029+0.009\left|L_{uckGrade}-184\right|,185 \le L_{uckGrade}<186:3.038+0.008\left|L_{uckGrade}-185\right|,186 \le L_{uckGrade}<187:3.046+0.009\left|L_{uckGrade}-186\right|,187 \le L_{uckGrade}<188:3.055+0.008\left|L_{uckGrade}-187\right|,188 \le L_{uckGrade}<189:3.063+0.009\left|L_{uckGrade}-188\right|,189 \le L_{uckGrade}<190:3.072+0.008\left|L_{uckGrade}-189\right|,190 \le L_{uckGrade}<191:3.08+0.009\left|L_{uckGrade}-190\right|,191 \le L_{uckGrade}<193:3.089+0.008\left|L_{uckGrade}-191\right|,193 \le L_{uckGrade}<194:3.105+0.009\left|L_{uckGrade}-193\right|,194 \le L_{uckGrade}<198:3.114+0.008\left|L_{uckGrade}-194\right|,198 \le L_{uckGrade}<199:3.146+0.009\left|L_{uckGrade}-198\right|,199 \le L_{uckGrade}<209:3.155+0.008\left|L_{uckGrade}-199\right|,209 \le L_{uckGrade}<210:3.235+0.007\left|L_{uckGrade}-209\right|,210 \le L_{uckGrade}<214:3.242+0.008\left|L_{uckGrade}-210\right|,214 \le L_{uckGrade}<215:3.274+0.007\left|L_{uckGrade}-214\right|,215 \le L_{uckGrade}<217:3.281+0.008\left|L_{uckGrade}-215\right|,217 \le L_{uckGrade}<218:3.297+0.007\left|L_{uckGrade}-217\right|,218 \le L_{uckGrade}<220:3.304+0.008\left|L_{uckGrade}-218\right|,220 \le L_{uckGrade}<221:3.32+0.007\left|L_{uckGrade}-220\right|,221 \le L_{uckGrade}<222:3.327+0.008\left|L_{uckGrade}-221\right|,222 \le L_{uckGrade}<223:3.335+0.007\left|L_{uckGrade}-222\right|,223 \le L_{uckGrade}<224:3.342+0.008\left|L_{uckGrade}-223\right|,224 \le L_{uckGrade}<225:3.35+0.007\left|L_{uckGrade}-224\right|,225 \le L_{uckGrade}<226:3.357+0.008\left|L_{uckGrade}-225\right|,226 \le L_{uckGrade}<228:3.365+0.007\left|L_{uckGrade}-226\right|,228 \le L_{uckGrade}<229:3.379+0.008\left|L_{uckGrade}-228\right|,229 \le L_{uckGrade}<231:3.387+0.007\left|L_{uckGrade}-229\right|,231 \le L_{uckGrade}<232:3.401+0.008\left|L_{uckGrade}-231\right|,232 \le L_{uckGrade}<237:3.409+0.007\left|L_{uckGrade}-232\right|,237 \le L_{uckGrade}<238:3.444+0.008\left|L_{uckGrade}-237\right|,238 \le L_{uckGrade}<244:3.452+0.007\left|L_{uckGrade}-238\right|,244 \le L_{uckGrade}<245:3.494+0.006\left|L_{uckGrade}-244\right|,245 \le L_{uckGrade}<250:3.5+0.007\left|L_{uckGrade}-245\right|,250 \le L_{uckGrade}<251:3.535+0.006\left|L_{uckGrade}-250\right|,251 \le L_{uckGrade}<253:3.541+0.007\left|L_{uckGrade}-251\right|,253 \le L_{uckGrade}<254:3.555+0.006\left|L_{uckGrade}-253\right|,254 \le L_{uckGrade}<256:3.561+0.007\left|L_{uckGrade}-254\right|,256 \le L_{uckGrade}<257:3.575+0.006\left|L_{uckGrade}-256\right|,257 \le L_{uckGrade}<258:3.581+0.007\left|L_{uckGrade}-257\right|,258 \le L_{uckGrade}<259:3.588+0.006\left|L_{uckGrade}-258\right|,259 \le L_{uckGrade}<260:3.594+0.007\left|L_{uckGrade}-259\right|,260 \le L_{uckGrade}<261:3.601+0.006\left|L_{uckGrade}-260\right|,261 \le L_{uckGrade}<262:3.607+0.007\left|L_{uckGrade}-261\right|,262 \le L_{uckGrade}<263:3.614+0.006\left|L_{uckGrade}-262\right|,263 \le L_{uckGrade}<264:3.62+0.007\left|L_{uckGrade}-263\right|,264 \le L_{uckGrade}<266:3.627+0.006\left|L_{uckGrade}-264\right|,266 \le L_{uckGrade}<267:3.639+0.007\left|L_{uckGrade}-266\right|,267 \le L_{uckGrade}<270:3.646+0.006\left|L_{uckGrade}-267\right|,270 \le L_{uckGrade}<271:3.664+0.007\left|L_{uckGrade}-270\right|,271 \le L_{uckGrade}<286:3.671+0.006\left|L_{uckGrade}-271\right|,286 \le L_{uckGrade}<287:3.761+0.005\left|L_{uckGrade}-286\right|,287 \le L_{uckGrade}<290:3.766+0.006\left|L_{uckGrade}-287\right|,290 \le L_{uckGrade}<291:3.784+0.005\left|L_{uckGrade}-290\right|,291 \le L_{uckGrade}<292:3.789+0.006\left|L_{uckGrade}-291\right|,292 \le L_{uckGrade}<293:3.795+0.005\left|L_{uckGrade}-292\right|,293 \le L_{uckGrade}<295:3.8+0.006\left|L_{uckGrade}-293\right|,295 \le L_{uckGrade}<296:3.812+0.005\left|L_{uckGrade}-295\right|,296 \le L_{uckGrade}<297:3.817+0.006\left|L_{uckGrade}-296\right|,297 \le L_{uckGrade}<298:3.823+0.005\left|L_{uckGrade}-297\right|,298 \le L_{uckGrade}<299:3.828+0.006\left|L_{uckGrade}-298\right|,299 \le L_{uckGrade}<301:3.834+0.005\left|L_{uckGrade}-299\right|,301 \le L_{uckGrade}<302:3.844+0.006\left|L_{uckGrade}-301\right|,302 \le L_{uckGrade}<304:3.85+0.005\left|L_{uckGrade}-302\right|,304 \le L_{uckGrade}<305:3.86+0.006\left|L_{uckGrade}-304\right|,305 \le L_{uckGrade}<308:3.866+0.005\left|L_{uckGrade}-305\right|,308 \le L_{uckGrade}<309:3.881+0.006\left|L_{uckGrade}-308\right|,309 \le L_{uckGrade}<322:3.887+0.005\left|L_{uckGrade}-309\right|,322 \le L_{uckGrade}<323:3.952+0.004\left|L_{uckGrade}-322\right|,323 \le L_{uckGrade}<326:3.956+0.005\left|L_{uckGrade}-323\right|,326 \le L_{uckGrade}<327:3.971+0.004\left|L_{uckGrade}-326\right|,327 \le L_{uckGrade}<329:3.975+0.005\left|L_{uckGrade}-327\right|,329 \le L_{uckGrade}<330:3.985+0.004\left|L_{uckGrade}-329\right|,330 \le L_{uckGrade}<331:3.989+0.005\left|L_{uckGrade}-330\right|,331 \le L_{uckGrade}<332:3.994+0.004\left|L_{uckGrade}-331\right|,332 \le L_{uckGrade}<334:3.998+0.005\left|L_{uckGrade}-332\right|,334 \le L_{uckGrade}<336:4.008+0.004\left|L_{uckGrade}-334\right|,336 \le L_{uckGrade}<337:4.016+0.005\left|L_{uckGrade}-336\right|,337 \le L_{uckGrade}<338:4.021+0.004\left|L_{uckGrade}-337\right|,338 \le L_{uckGrade}<339:4.025+0.005\left|L_{uckGrade}-338\right|,339 \le L_{uckGrade}<341:4.03+0.004\left|L_{uckGrade}-339\right|,341 \le L_{uckGrade}<342:4.038+0.005\left|L_{uckGrade}-341\right|,342 \le L_{uckGrade}<345:4.043+0.004\left|L_{uckGrade}-342\right|,345 \le L_{uckGrade}<346:4.055+0.005\left|L_{uckGrade}-345\right|,346 \le L_{uckGrade}<358:4.06+0.004\left|L_{uckGrade}-346\right|,358 \le L_{uckGrade}<359:4.108+0.003\left|L_{uckGrade}-358\right|,359 \le L_{uckGrade}<363:4.111+0.004\left|L_{uckGrade}-359\right|,363 \le L_{uckGrade}<364:4.127+0.003\left|L_{uckGrade}-363\right|,364 \le L_{uckGrade}<366:4.13+0.004\left|L_{uckGrade}-364\right|,366 \le L_{uckGrade}<367:4.138+0.003\left|L_{uckGrade}-366\right|,367 \le L_{uckGrade}<368:4.141+0.004\left|L_{uckGrade}-367\right|,368 \le L_{uckGrade}<369:4.145+0.003\left|L_{uckGrade}-368\right|,369 \le L_{uckGrade}<370:4.148+0.004\left|L_{uckGrade}-369\right|,370 \le L_{uckGrade}<371:4.152+0.003\left|L_{uckGrade}-370\right|,371 \le L_{uckGrade}<372:4.155+0.004\left|L_{uckGrade}-371\right|,372 \le L_{uckGrade}<373:4.159+0.003\left|L_{uckGrade}-372\right|,373 \le L_{uckGrade}<374:4.162+0.004\left|L_{uckGrade}-373\right|,374 \le L_{uckGrade}<375:4.166+0.003\left|L_{uckGrade}-374\right|,375 \le L_{uckGrade}<376:4.169+0.004\left|L_{uckGrade}-375\right|,376 \le L_{uckGrade}<379:4.173+0.003\left|L_{uckGrade}-376\right|,379 \le L_{uckGrade}<380:4.182+0.004\left|L_{uckGrade}-379\right|,380 \le L_{uckGrade}<383:4.186+0.003\left|L_{uckGrade}-380\right|,383 \le L_{uckGrade}<384:4.195+0.004\left|L_{uckGrade}-383\right|,384 \le L_{uckGrade}<394:4.199+0.003\left|L_{uckGrade}-384\right|,394 \le L_{uckGrade}<395:4.229+0.002\left|L_{uckGrade}-394\right|,395 \le L_{uckGrade}<399:4.231+0.003\left|L_{uckGrade}-395\right|,399 \le L_{uckGrade}<400:4.243+0.002\left|L_{uckGrade}-399\right|,400 \le L_{uckGrade}<402:4.245+0.003\left|L_{uckGrade}-400\right|,402 \le L_{uckGrade}<403:4.251+0.002\left|L_{uckGrade}-402\right|,403 \le L_{uckGrade}<405:4.253+0.003\left|L_{uckGrade}-403\right|,405 \le L_{uckGrade}<406:4.259+0.002\left|L_{uckGrade}-405\right|,406 \le L_{uckGrade}<407:4.261+0.003\left|L_{uckGrade}-406\right|,407 \le L_{uckGrade}<408:4.264+0.002\left|L_{uckGrade}-407\right|,408 \le L_{uckGrade}<409:4.266+0.003\left|L_{uckGrade}-408\right|,409 \le L_{uckGrade}<410:4.269+0.002\left|L_{uckGrade}-409\right|,410 \le L_{uckGrade}<411:4.271+0.003\left|L_{uckGrade}-410\right|,411 \le L_{uckGrade}<413:4.274+0.002\left|L_{uckGrade}-411\right|,413 \le L_{uckGrade}<414:4.278+0.003\left|L_{uckGrade}-413\right|,414 \le L_{uckGrade}<416:4.281+0.002\left|L_{uckGrade}-414\right|,416 \le L_{uckGrade}<417:4.285+0.003\left|L_{uckGrade}-416\right|,417 \le L_{uckGrade}<421:4.288+0.002\left|L_{uckGrade}-417\right|,421 \le L_{uckGrade}<422:4.296+0.003\left|L_{uckGrade}-421\right|,422 \le L_{uckGrade}<431:4.299+0.002\left|L_{uckGrade}-422\right|,431 \le L_{uckGrade}<432:4.317+0.001\left|L_{uckGrade}-431\right|,432 \le L_{uckGrade}<436:4.318+0.002\left|L_{uckGrade}-432\right|,436 \le L_{uckGrade}<437:4.326+0.001\left|L_{uckGrade}-436\right|,437 \le L_{uckGrade}<439:4.327+0.002\left|L_{uckGrade}-437\right|,439 \le L_{uckGrade}<440:4.331+0.001\left|L_{uckGrade}-439\right|,440 \le L_{uckGrade}<442:4.332+0.002\left|L_{uckGrade}-440\right|,442 \le L_{uckGrade}<443:4.336+0.001\left|L_{uckGrade}-442\right|,443 \le L_{uckGrade}<444:4.337+0.002\left|L_{uckGrade}-443\right|,444 \le L_{uckGrade}<445:4.339+0.001\left|L_{uckGrade}-444\right|,445 \le L_{uckGrade}<446:4.34+0.002\left|L_{uckGrade}-445\right|,446 \le L_{uckGrade}<447:4.342+0.001\left|L_{uckGrade}-446\right|,447 \le L_{uckGrade}<448:4.343+0.002\left|L_{uckGrade}-447\right|,448 \le L_{uckGrade}<450:4.345+0.001\left|L_{uckGrade}-448\right|,450 \le L_{uckGrade}<451:4.347+0.002\left|L_{uckGrade}-450\right|,451 \le L_{uckGrade}<453:4.349+0.001\left|L_{uckGrade}-451\right|,453 \le L_{uckGrade}<454:4.351+0.002\left|L_{uckGrade}-453\right|,454 \le L_{uckGrade}<458:4.353+0.001\left|L_{uckGrade}-454\right|,458 \le L_{uckGrade}<459:4.357+0.002\left|L_{uckGrade}-458\right|,459 \le L_{uckGrade}<467:4.359+0.001\left|L_{uckGrade}-459\right|,467 \le L_{uckGrade}<468:4.367+0\left|L_{uckGrade}-467\right|,468 \le L_{uckGrade}<473:4.367+0.001\left|L_{uckGrade}-468\right|,473 \le L_{uckGrade}<474:4.372+0\left|L_{uckGrade}-473\right|,474 \le L_{uckGrade}<476:4.372+0.001\left|L_{uckGrade}-474\right|,476 \le L_{uckGrade}<477:4.374+0\left|L_{uckGrade}-476\right|,477 \le L_{uckGrade}<479:4.374+0.001\left|L_{uckGrade}-477\right|,479 \le L_{uckGrade}<480:4.376+0\left|L_{uckGrade}-479\right|,480 \le L_{uckGrade}<481:4.376+0.001\left|L_{uckGrade}-480\right|,481 \le L_{uckGrade}<482:4.377+0\left|L_{uckGrade}-481\right|,482 \le L_{uckGrade}<483:4.377+0.001\left|L_{uckGrade}-482\right|,483 \le L_{uckGrade}<484:4.378+0\left|L_{uckGrade}-483\right|,484 \le L_{uckGrade}<485:4.378+0.001\left|L_{uckGrade}-484\right|,485 \le L_{uckGrade}<487:4.379+0\left|L_{uckGrade}-485\right|,487 \le L_{uckGrade}<488:4.379+0.001\left|L_{uckGrade}-487\right|,488 \le L_{uckGrade}<490:4.38+0\left|L_{uckGrade}-488\right|,490 \le L_{uckGrade}<491:4.38+0.001\left|L_{uckGrade}-490\right|,491 \le L_{uckGrade}<496:4.381+0\left|L_{uckGrade}-491\right|,496 \le L_{uckGrade}<497:4.381+0.001\left|L_{uckGrade}-496\right|,497 \le L_{uckGrade}<500:4.382+0\left|L_{uckGrade}-497\right|\right\}</pre>
|luckgrade07=<pre>L_{uckGrade07}(L_{uckGrade})=\left\{0 \le L_{uckGrade}<1:1+0.014\left|L_{uckGrade}-0\right|,1 \le L_{uckGrade}<3:1.014+0.013\left|L_{uckGrade}-1\right|,3 \le L_{uckGrade}<4:1.04+0.014\left|L_{uckGrade}-3\right|,4 \le L_{uckGrade}<5:1.054+0.013\left|L_{uckGrade}-4\right|,5 \le L_{uckGrade}<6:1.067+0.014\left|L_{uckGrade}-5\right|,6 \le L_{uckGrade}<8:1.081+0.013\left|L_{uckGrade}-6\right|,8 \le L_{uckGrade}<9:1.107+0.014\left|L_{uckGrade}-8\right|,9 \le L_{uckGrade}<13:1.121+0.013\left|L_{uckGrade}-9\right|,13 \le L_{uckGrade}<14:1.173+0.014\left|L_{uckGrade}-13\right|,14 \le L_{uckGrade}<24:1.187+0.013\left|L_{uckGrade}-14\right|,24 \le L_{uckGrade}<25:1.317+0.012\left|L_{uckGrade}-24\right|,25 \le L_{uckGrade}<29:1.329+0.013\left|L_{uckGrade}-25\right|,29 \le L_{uckGrade}<30:1.381+0.012\left|L_{uckGrade}-29\right|,30 \le L_{uckGrade}<32:1.393+0.013\left|L_{uckGrade}-30\right|,32 \le L_{uckGrade}<33:1.419+0.012\left|L_{uckGrade}-32\right|,33 \le L_{uckGrade}<34:1.431+0.013\left|L_{uckGrade}-33\right|,34 \le L_{uckGrade}<35:1.444+0.012\left|L_{uckGrade}-34\right|,35 \le L_{uckGrade}<37:1.456+0.013\left|L_{uckGrade}-35\right|,37 \le L_{uckGrade}<39:1.482+0.012\left|L_{uckGrade}-37\right|,39 \le L_{uckGrade}<40:1.506+0.013\left|L_{uckGrade}-39\right|,40 \le L_{uckGrade}<41:1.519+0.012\left|L_{uckGrade}-40\right|,41 \le L_{uckGrade}<42:1.531+0.013\left|L_{uckGrade}-41\right|,42 \le L_{uckGrade}<44:1.544+0.012\left|L_{uckGrade}-42\right|,44 \le L_{uckGrade}<45:1.568+0.013\left|L_{uckGrade}-44\right|,45 \le L_{uckGrade}<47:1.581+0.012\left|L_{uckGrade}-45\right|,47 \le L_{uckGrade}<48:1.605+0.013\left|L_{uckGrade}-47\right|,48 \le L_{uckGrade}<64:1.618+0.012\left|L_{uckGrade}-48\right|,64 \le L_{uckGrade}<65:1.81+0.011\left|L_{uckGrade}-64\right|,65 \le L_{uckGrade}<67:1.821+0.012\left|L_{uckGrade}-65\right|,67 \le L_{uckGrade}<68:1.845+0.011\left|L_{uckGrade}-67\right|,68 \le L_{uckGrade}<70:1.856+0.012\left|L_{uckGrade}-68\right|,70 \le L_{uckGrade}<71:1.88+0.011\left|L_{uckGrade}-70\right|,71 \le L_{uckGrade}<73:1.891+0.012\left|L_{uckGrade}-71\right|,73 \le L_{uckGrade}<74:1.915+0.011\left|L_{uckGrade}-73\right|,74 \le L_{uckGrade}<75:1.926+0.012\left|L_{uckGrade}-74\right|,75 \le L_{uckGrade}<77:1.938+0.011\left|L_{uckGrade}-75\right|,77 \le L_{uckGrade}<78:1.96+0.012\left|L_{uckGrade}-77\right|,78 \le L_{uckGrade}<79:1.972+0.011\left|L_{uckGrade}-78\right|,79 \le L_{uckGrade}<80:1.983+0.012\left|L_{uckGrade}-79\right|,80 \le L_{uckGrade}<82:1.995+0.011\left|L_{uckGrade}-80\right|,82 \le L_{uckGrade}<83:2.017+0.012\left|L_{uckGrade}-82\right|,83 \le L_{uckGrade}<87:2.029+0.011\left|L_{uckGrade}-83\right|,87 \le L_{uckGrade}<88:2.073+0.012\left|L_{uckGrade}-87\right|,88 \le L_{uckGrade}<99:2.085+0.011\left|L_{uckGrade}-88\right|,99 \le L_{uckGrade}<100:2.206+0.01\left|L_{uckGrade}-99\right|,100 \le L_{uckGrade}<103:2.216+0.011\left|L_{uckGrade}-100\right|,103 \le L_{uckGrade}<104:2.249+0.01\left|L_{uckGrade}-103\right|,104 \le L_{uckGrade}<106:2.259+0.011\left|L_{uckGrade}-104\right|,106 \le L_{uckGrade}<107:2.281+0.01\left|L_{uckGrade}-106\right|,107 \le L_{uckGrade}<109:2.291+0.011\left|L_{uckGrade}-107\right|,109 \le L_{uckGrade}<110:2.313+0.01\left|L_{uckGrade}-109\right|,110 \le L_{uckGrade}<111:2.323+0.011\left|L_{uckGrade}-110\right|,111 \le L_{uckGrade}<112:2.334+0.01\left|L_{uckGrade}-111\right|,112 \le L_{uckGrade}<113:2.344+0.011\left|L_{uckGrade}-112\right|,113 \le L_{uckGrade}<114:2.355+0.01\left|L_{uckGrade}-113\right|,114 \le L_{uckGrade}<115:2.365+0.011\left|L_{uckGrade}-114\right|,115 \le L_{uckGrade}<117:2.376+0.01\left|L_{uckGrade}-115\right|,117 \le L_{uckGrade}<118:2.396+0.011\left|L_{uckGrade}-117\right|,118 \le L_{uckGrade}<121:2.407+0.01\left|L_{uckGrade}-118\right|,121 \le L_{uckGrade}<122:2.437+0.011\left|L_{uckGrade}-121\right|,122 \le L_{uckGrade}<127:2.448+0.01\left|L_{uckGrade}-122\right|,127 \le L_{uckGrade}<128:2.498+0.011\left|L_{uckGrade}-127\right|,128 \le L_{uckGrade}<132:2.509+0.01\left|L_{uckGrade}-128\right|,132 \le L_{uckGrade}<133:2.549+0.009\left|L_{uckGrade}-132\right|,133 \le L_{uckGrade}<139:2.558+0.01\left|L_{uckGrade}-133\right|,139 \le L_{uckGrade}<140:2.618+0.009\left|L_{uckGrade}-139\right|,140 \le L_{uckGrade}<142:2.627+0.01\left|L_{uckGrade}-140\right|,142 \le L_{uckGrade}<143:2.647+0.009\left|L_{uckGrade}-142\right|,143 \le L_{uckGrade}<145:2.656+0.01\left|L_{uckGrade}-143\right|,145 \le L_{uckGrade}<146:2.676+0.009\left|L_{uckGrade}-145\right|,146 \le L_{uckGrade}<147:2.685+0.01\left|L_{uckGrade}-146\right|,147 \le L_{uckGrade}<148:2.695+0.009\left|L_{uckGrade}-147\right|,148 \le L_{uckGrade}<149:2.704+0.01\left|L_{uckGrade}-148\right|,149 \le L_{uckGrade}<150:2.714+0.009\left|L_{uckGrade}-149\right|,150 \le L_{uckGrade}<151:2.723+0.01\left|L_{uckGrade}-150\right|,151 \le L_{uckGrade}<152:2.733+0.009\left|L_{uckGrade}-151\right|,152 \le L_{uckGrade}<153:2.742+0.01\left|L_{uckGrade}-152\right|,153 \le L_{uckGrade}<155:2.752+0.009\left|L_{uckGrade}-153\right|,155 \le L_{uckGrade}<156:2.77+0.01\left|L_{uckGrade}-155\right|,156 \le L_{uckGrade}<159:2.78+0.009\left|L_{uckGrade}-156\right|,159 \le L_{uckGrade}<160:2.807+0.01\left|L_{uckGrade}-159\right|,160 \le L_{uckGrade}<174:2.817+0.009\left|L_{uckGrade}-160\right|,174 \le L_{uckGrade}<175:2.943+0.008\left|L_{uckGrade}-174\right|,175 \le L_{uckGrade}<178:2.951+0.009\left|L_{uckGrade}-175\right|,178 \le L_{uckGrade}<179:2.978+0.008\left|L_{uckGrade}-178\right|,179 \le L_{uckGrade}<181:2.986+0.009\left|L_{uckGrade}-179\right|,181 \le L_{uckGrade}<182:3.004+0.008\left|L_{uckGrade}-181\right|,182 \le L_{uckGrade}<183:3.012+0.009\left|L_{uckGrade}-182\right|,183 \le L_{uckGrade}<184:3.021+0.008\left|L_{uckGrade}-183\right|,184 \le L_{uckGrade}<185:3.029+0.009\left|L_{uckGrade}-184\right|,185 \le L_{uckGrade}<186:3.038+0.008\left|L_{uckGrade}-185\right|,186 \le L_{uckGrade}<187:3.046+0.009\left|L_{uckGrade}-186\right|,187 \le L_{uckGrade}<188:3.055+0.008\left|L_{uckGrade}-187\right|,188 \le L_{uckGrade}<189:3.063+0.009\left|L_{uckGrade}-188\right|,189 \le L_{uckGrade}<190:3.072+0.008\left|L_{uckGrade}-189\right|,190 \le L_{uckGrade}<191:3.08+0.009\left|L_{uckGrade}-190\right|,191 \le L_{uckGrade}<193:3.089+0.008\left|L_{uckGrade}-191\right|,193 \le L_{uckGrade}<194:3.105+0.009\left|L_{uckGrade}-193\right|,194 \le L_{uckGrade}<198:3.114+0.008\left|L_{uckGrade}-194\right|,198 \le L_{uckGrade}<199:3.146+0.009\left|L_{uckGrade}-198\right|,199 \le L_{uckGrade}<209:3.155+0.008\left|L_{uckGrade}-199\right|,209 \le L_{uckGrade}<210:3.235+0.007\left|L_{uckGrade}-209\right|,210 \le L_{uckGrade}<214:3.242+0.008\left|L_{uckGrade}-210\right|,214 \le L_{uckGrade}<215:3.274+0.007\left|L_{uckGrade}-214\right|,215 \le L_{uckGrade}<217:3.281+0.008\left|L_{uckGrade}-215\right|,217 \le L_{uckGrade}<218:3.297+0.007\left|L_{uckGrade}-217\right|,218 \le L_{uckGrade}<220:3.304+0.008\left|L_{uckGrade}-218\right|,220 \le L_{uckGrade}<221:3.32+0.007\left|L_{uckGrade}-220\right|,221 \le L_{uckGrade}<222:3.327+0.008\left|L_{uckGrade}-221\right|,222 \le L_{uckGrade}<223:3.335+0.007\left|L_{uckGrade}-222\right|,223 \le L_{uckGrade}<224:3.342+0.008\left|L_{uckGrade}-223\right|,224 \le L_{uckGrade}<225:3.35+0.007\left|L_{uckGrade}-224\right|,225 \le L_{uckGrade}<226:3.357+0.008\left|L_{uckGrade}-225\right|,226 \le L_{uckGrade}<228:3.365+0.007\left|L_{uckGrade}-226\right|,228 \le L_{uckGrade}<229:3.379+0.008\left|L_{uckGrade}-228\right|,229 \le L_{uckGrade}<231:3.387+0.007\left|L_{uckGrade}-229\right|,231 \le L_{uckGrade}<232:3.401+0.008\left|L_{uckGrade}-231\right|,232 \le L_{uckGrade}<237:3.409+0.007\left|L_{uckGrade}-232\right|,237 \le L_{uckGrade}<238:3.444+0.008\left|L_{uckGrade}-237\right|,238 \le L_{uckGrade}<244:3.452+0.007\left|L_{uckGrade}-238\right|,244 \le L_{uckGrade}<245:3.494+0.006\left|L_{uckGrade}-244\right|,245 \le L_{uckGrade}<250:3.5+0.007\left|L_{uckGrade}-245\right|,250 \le L_{uckGrade}<251:3.535+0.006\left|L_{uckGrade}-250\right|,251 \le L_{uckGrade}<253:3.541+0.007\left|L_{uckGrade}-251\right|,253 \le L_{uckGrade}<254:3.555+0.006\left|L_{uckGrade}-253\right|,254 \le L_{uckGrade}<256:3.561+0.007\left|L_{uckGrade}-254\right|,256 \le L_{uckGrade}<257:3.575+0.006\left|L_{uckGrade}-256\right|,257 \le L_{uckGrade}<258:3.581+0.007\left|L_{uckGrade}-257\right|,258 \le L_{uckGrade}<259:3.588+0.006\left|L_{uckGrade}-258\right|,259 \le L_{uckGrade}<260:3.594+0.007\left|L_{uckGrade}-259\right|,260 \le L_{uckGrade}<261:3.601+0.006\left|L_{uckGrade}-260\right|,261 \le L_{uckGrade}<262:3.607+0.007\left|L_{uckGrade}-261\right|,262 \le L_{uckGrade}<263:3.614+0.006\left|L_{uckGrade}-262\right|,263 \le L_{uckGrade}<264:3.62+0.007\left|L_{uckGrade}-263\right|,264 \le L_{uckGrade}<266:3.627+0.006\left|L_{uckGrade}-264\right|,266 \le L_{uckGrade}<267:3.639+0.007\left|L_{uckGrade}-266\right|,267 \le L_{uckGrade}<270:3.646+0.006\left|L_{uckGrade}-267\right|,270 \le L_{uckGrade}<271:3.664+0.007\left|L_{uckGrade}-270\right|,271 \le L_{uckGrade}<286:3.671+0.006\left|L_{uckGrade}-271\right|,286 \le L_{uckGrade}<287:3.761+0.005\left|L_{uckGrade}-286\right|,287 \le L_{uckGrade}<290:3.766+0.006\left|L_{uckGrade}-287\right|,290 \le L_{uckGrade}<291:3.784+0.005\left|L_{uckGrade}-290\right|,291 \le L_{uckGrade}<292:3.789+0.006\left|L_{uckGrade}-291\right|,292 \le L_{uckGrade}<293:3.795+0.005\left|L_{uckGrade}-292\right|,293 \le L_{uckGrade}<295:3.8+0.006\left|L_{uckGrade}-293\right|,295 \le L_{uckGrade}<296:3.812+0.005\left|L_{uckGrade}-295\right|,296 \le L_{uckGrade}<297:3.817+0.006\left|L_{uckGrade}-296\right|,297 \le L_{uckGrade}<298:3.823+0.005\left|L_{uckGrade}-297\right|,298 \le L_{uckGrade}<299:3.828+0.006\left|L_{uckGrade}-298\right|,299 \le L_{uckGrade}<301:3.834+0.005\left|L_{uckGrade}-299\right|,301 \le L_{uckGrade}<302:3.844+0.006\left|L_{uckGrade}-301\right|,302 \le L_{uckGrade}<304:3.85+0.005\left|L_{uckGrade}-302\right|,304 \le L_{uckGrade}<305:3.86+0.006\left|L_{uckGrade}-304\right|,305 \le L_{uckGrade}<308:3.866+0.005\left|L_{uckGrade}-305\right|,308 \le L_{uckGrade}<309:3.881+0.006\left|L_{uckGrade}-308\right|,309 \le L_{uckGrade}<322:3.887+0.005\left|L_{uckGrade}-309\right|,322 \le L_{uckGrade}<323:3.952+0.004\left|L_{uckGrade}-322\right|,323 \le L_{uckGrade}<326:3.956+0.005\left|L_{uckGrade}-323\right|,326 \le L_{uckGrade}<327:3.971+0.004\left|L_{uckGrade}-326\right|,327 \le L_{uckGrade}<329:3.975+0.005\left|L_{uckGrade}-327\right|,329 \le L_{uckGrade}<330:3.985+0.004\left|L_{uckGrade}-329\right|,330 \le L_{uckGrade}<331:3.989+0.005\left|L_{uckGrade}-330\right|,331 \le L_{uckGrade}<332:3.994+0.004\left|L_{uckGrade}-331\right|,332 \le L_{uckGrade}<334:3.998+0.005\left|L_{uckGrade}-332\right|,334 \le L_{uckGrade}<336:4.008+0.004\left|L_{uckGrade}-334\right|,336 \le L_{uckGrade}<337:4.016+0.005\left|L_{uckGrade}-336\right|,337 \le L_{uckGrade}<338:4.021+0.004\left|L_{uckGrade}-337\right|,338 \le L_{uckGrade}<339:4.025+0.005\left|L_{uckGrade}-338\right|,339 \le L_{uckGrade}<341:4.03+0.004\left|L_{uckGrade}-339\right|,341 \le L_{uckGrade}<342:4.038+0.005\left|L_{uckGrade}-341\right|,342 \le L_{uckGrade}<345:4.043+0.004\left|L_{uckGrade}-342\right|,345 \le L_{uckGrade}<346:4.055+0.005\left|L_{uckGrade}-345\right|,346 \le L_{uckGrade}<358:4.06+0.004\left|L_{uckGrade}-346\right|,358 \le L_{uckGrade}<359:4.108+0.003\left|L_{uckGrade}-358\right|,359 \le L_{uckGrade}<363:4.111+0.004\left|L_{uckGrade}-359\right|,363 \le L_{uckGrade}<364:4.127+0.003\left|L_{uckGrade}-363\right|,364 \le L_{uckGrade}<366:4.13+0.004\left|L_{uckGrade}-364\right|,366 \le L_{uckGrade}<367:4.138+0.003\left|L_{uckGrade}-366\right|,367 \le L_{uckGrade}<368:4.141+0.004\left|L_{uckGrade}-367\right|,368 \le L_{uckGrade}<369:4.145+0.003\left|L_{uckGrade}-368\right|,369 \le L_{uckGrade}<370:4.148+0.004\left|L_{uckGrade}-369\right|,370 \le L_{uckGrade}<371:4.152+0.003\left|L_{uckGrade}-370\right|,371 \le L_{uckGrade}<372:4.155+0.004\left|L_{uckGrade}-371\right|,372 \le L_{uckGrade}<373:4.159+0.003\left|L_{uckGrade}-372\right|,373 \le L_{uckGrade}<374:4.162+0.004\left|L_{uckGrade}-373\right|,374 \le L_{uckGrade}<375:4.166+0.003\left|L_{uckGrade}-374\right|,375 \le L_{uckGrade}<376:4.169+0.004\left|L_{uckGrade}-375\right|,376 \le L_{uckGrade}<379:4.173+0.003\left|L_{uckGrade}-376\right|,379 \le L_{uckGrade}<380:4.182+0.004\left|L_{uckGrade}-379\right|,380 \le L_{uckGrade}<383:4.186+0.003\left|L_{uckGrade}-380\right|,383 \le L_{uckGrade}<384:4.195+0.004\left|L_{uckGrade}-383\right|,384 \le L_{uckGrade}<394:4.199+0.003\left|L_{uckGrade}-384\right|,394 \le L_{uckGrade}<395:4.229+0.002\left|L_{uckGrade}-394\right|,395 \le L_{uckGrade}<399:4.231+0.003\left|L_{uckGrade}-395\right|,399 \le L_{uckGrade}<400:4.243+0.002\left|L_{uckGrade}-399\right|,400 \le L_{uckGrade}<402:4.245+0.003\left|L_{uckGrade}-400\right|,402 \le L_{uckGrade}<403:4.251+0.002\left|L_{uckGrade}-402\right|,403 \le L_{uckGrade}<405:4.253+0.003\left|L_{uckGrade}-403\right|,405 \le L_{uckGrade}<406:4.259+0.002\left|L_{uckGrade}-405\right|,406 \le L_{uckGrade}<407:4.261+0.003\left|L_{uckGrade}-406\right|,407 \le L_{uckGrade}<408:4.264+0.002\left|L_{uckGrade}-407\right|,408 \le L_{uckGrade}<409:4.266+0.003\left|L_{uckGrade}-408\right|,409 \le L_{uckGrade}<410:4.269+0.002\left|L_{uckGrade}-409\right|,410 \le L_{uckGrade}<411:4.271+0.003\left|L_{uckGrade}-410\right|,411 \le L_{uckGrade}<413:4.274+0.002\left|L_{uckGrade}-411\right|,413 \le L_{uckGrade}<414:4.278+0.003\left|L_{uckGrade}-413\right|,414 \le L_{uckGrade}<416:4.281+0.002\left|L_{uckGrade}-414\right|,416 \le L_{uckGrade}<417:4.285+0.003\left|L_{uckGrade}-416\right|,417 \le L_{uckGrade}<421:4.288+0.002\left|L_{uckGrade}-417\right|,421 \le L_{uckGrade}<422:4.296+0.003\left|L_{uckGrade}-421\right|,422 \le L_{uckGrade}<431:4.299+0.002\left|L_{uckGrade}-422\right|,431 \le L_{uckGrade}<432:4.317+0.001\left|L_{uckGrade}-431\right|,432 \le L_{uckGrade}<436:4.318+0.002\left|L_{uckGrade}-432\right|,436 \le L_{uckGrade}<437:4.326+0.001\left|L_{uckGrade}-436\right|,437 \le L_{uckGrade}<439:4.327+0.002\left|L_{uckGrade}-437\right|,439 \le L_{uckGrade}<440:4.331+0.001\left|L_{uckGrade}-439\right|,440 \le L_{uckGrade}<442:4.332+0.002\left|L_{uckGrade}-440\right|,442 \le L_{uckGrade}<443:4.336+0.001\left|L_{uckGrade}-442\right|,443 \le L_{uckGrade}<444:4.337+0.002\left|L_{uckGrade}-443\right|,444 \le L_{uckGrade}<445:4.339+0.001\left|L_{uckGrade}-444\right|,445 \le L_{uckGrade}<446:4.34+0.002\left|L_{uckGrade}-445\right|,446 \le L_{uckGrade}<447:4.342+0.001\left|L_{uckGrade}-446\right|,447 \le L_{uckGrade}<448:4.343+0.002\left|L_{uckGrade}-447\right|,448 \le L_{uckGrade}<450:4.345+0.001\left|L_{uckGrade}-448\right|,450 \le L_{uckGrade}<451:4.347+0.002\left|L_{uckGrade}-450\right|,451 \le L_{uckGrade}<453:4.349+0.001\left|L_{uckGrade}-451\right|,453 \le L_{uckGrade}<454:4.351+0.002\left|L_{uckGrade}-453\right|,454 \le L_{uckGrade}<458:4.353+0.001\left|L_{uckGrade}-454\right|,458 \le L_{uckGrade}<459:4.357+0.002\left|L_{uckGrade}-458\right|,459 \le L_{uckGrade}<467:4.359+0.001\left|L_{uckGrade}-459\right|,467 \le L_{uckGrade}<468:4.367+0\left|L_{uckGrade}-467\right|,468 \le L_{uckGrade}<473:4.367+0.001\left|L_{uckGrade}-468\right|,473 \le L_{uckGrade}<474:4.372+0\left|L_{uckGrade}-473\right|,474 \le L_{uckGrade}<476:4.372+0.001\left|L_{uckGrade}-474\right|,476 \le L_{uckGrade}<477:4.374+0\left|L_{uckGrade}-476\right|,477 \le L_{uckGrade}<479:4.374+0.001\left|L_{uckGrade}-477\right|,479 \le L_{uckGrade}<480:4.376+0\left|L_{uckGrade}-479\right|,480 \le L_{uckGrade}<481:4.376+0.001\left|L_{uckGrade}-480\right|,481 \le L_{uckGrade}<482:4.377+0\left|L_{uckGrade}-481\right|,482 \le L_{uckGrade}<483:4.377+0.001\left|L_{uckGrade}-482\right|,483 \le L_{uckGrade}<484:4.378+0\left|L_{uckGrade}-483\right|,484 \le L_{uckGrade}<485:4.378+0.001\left|L_{uckGrade}-484\right|,485 \le L_{uckGrade}<487:4.379+0\left|L_{uckGrade}-485\right|,487 \le L_{uckGrade}<488:4.379+0.001\left|L_{uckGrade}-487\right|,488 \le L_{uckGrade}<490:4.38+0\left|L_{uckGrade}-488\right|,490 \le L_{uckGrade}<491:4.38+0.001\left|L_{uckGrade}-490\right|,491 \le L_{uckGrade}<496:4.381+0\left|L_{uckGrade}-491\right|,496 \le L_{uckGrade}<497:4.381+0.001\left|L_{uckGrade}-496\right|,497 \le L_{uckGrade}<500:4.382+0\left|L_{uckGrade}-497\right|\right\}</pre>
|luckgrade08=<pre>L_{uckGrade08}(L_{uckGrade})=\left\{0 \le L_{uckGrade}<1:1+0.014\left|L_{uckGrade}-0\right|,1 \le L_{uckGrade}<3:1.014+0.013\left|L_{uckGrade}-1\right|,3 \le L_{uckGrade}<4:1.04+0.014\left|L_{uckGrade}-3\right|,4 \le L_{uckGrade}<5:1.054+0.013\left|L_{uckGrade}-4\right|,5 \le L_{uckGrade}<6:1.067+0.014\left|L_{uckGrade}-5\right|,6 \le L_{uckGrade}<8:1.081+0.013\left|L_{uckGrade}-6\right|,8 \le L_{uckGrade}<9:1.107+0.014\left|L_{uckGrade}-8\right|,9 \le L_{uckGrade}<13:1.121+0.013\left|L_{uckGrade}-9\right|,13 \le L_{uckGrade}<14:1.173+0.014\left|L_{uckGrade}-13\right|,14 \le L_{uckGrade}<24:1.187+0.013\left|L_{uckGrade}-14\right|,24 \le L_{uckGrade}<25:1.317+0.012\left|L_{uckGrade}-24\right|,25 \le L_{uckGrade}<29:1.329+0.013\left|L_{uckGrade}-25\right|,29 \le L_{uckGrade}<30:1.381+0.012\left|L_{uckGrade}-29\right|,30 \le L_{uckGrade}<32:1.393+0.013\left|L_{uckGrade}-30\right|,32 \le L_{uckGrade}<33:1.419+0.012\left|L_{uckGrade}-32\right|,33 \le L_{uckGrade}<34:1.431+0.013\left|L_{uckGrade}-33\right|,34 \le L_{uckGrade}<35:1.444+0.012\left|L_{uckGrade}-34\right|,35 \le L_{uckGrade}<37:1.456+0.013\left|L_{uckGrade}-35\right|,37 \le L_{uckGrade}<39:1.482+0.012\left|L_{uckGrade}-37\right|,39 \le L_{uckGrade}<40:1.506+0.013\left|L_{uckGrade}-39\right|,40 \le L_{uckGrade}<41:1.519+0.012\left|L_{uckGrade}-40\right|,41 \le L_{uckGrade}<42:1.531+0.013\left|L_{uckGrade}-41\right|,42 \le L_{uckGrade}<44:1.544+0.012\left|L_{uckGrade}-42\right|,44 \le L_{uckGrade}<45:1.568+0.013\left|L_{uckGrade}-44\right|,45 \le L_{uckGrade}<47:1.581+0.012\left|L_{uckGrade}-45\right|,47 \le L_{uckGrade}<48:1.605+0.013\left|L_{uckGrade}-47\right|,48 \le L_{uckGrade}<64:1.618+0.012\left|L_{uckGrade}-48\right|,64 \le L_{uckGrade}<65:1.81+0.011\left|L_{uckGrade}-64\right|,65 \le L_{uckGrade}<67:1.821+0.012\left|L_{uckGrade}-65\right|,67 \le L_{uckGrade}<68:1.845+0.011\left|L_{uckGrade}-67\right|,68 \le L_{uckGrade}<70:1.856+0.012\left|L_{uckGrade}-68\right|,70 \le L_{uckGrade}<71:1.88+0.011\left|L_{uckGrade}-70\right|,71 \le L_{uckGrade}<73:1.891+0.012\left|L_{uckGrade}-71\right|,73 \le L_{uckGrade}<74:1.915+0.011\left|L_{uckGrade}-73\right|,74 \le L_{uckGrade}<75:1.926+0.012\left|L_{uckGrade}-74\right|,75 \le L_{uckGrade}<77:1.938+0.011\left|L_{uckGrade}-75\right|,77 \le L_{uckGrade}<78:1.96+0.012\left|L_{uckGrade}-77\right|,78 \le L_{uckGrade}<79:1.972+0.011\left|L_{uckGrade}-78\right|,79 \le L_{uckGrade}<80:1.983+0.012\left|L_{uckGrade}-79\right|,80 \le L_{uckGrade}<82:1.995+0.011\left|L_{uckGrade}-80\right|,82 \le L_{uckGrade}<83:2.017+0.012\left|L_{uckGrade}-82\right|,83 \le L_{uckGrade}<87:2.029+0.011\left|L_{uckGrade}-83\right|,87 \le L_{uckGrade}<88:2.073+0.012\left|L_{uckGrade}-87\right|,88 \le L_{uckGrade}<99:2.085+0.011\left|L_{uckGrade}-88\right|,99 \le L_{uckGrade}<100:2.206+0.01\left|L_{uckGrade}-99\right|,100 \le L_{uckGrade}<103:2.216+0.011\left|L_{uckGrade}-100\right|,103 \le L_{uckGrade}<104:2.249+0.01\left|L_{uckGrade}-103\right|,104 \le L_{uckGrade}<106:2.259+0.011\left|L_{uckGrade}-104\right|,106 \le L_{uckGrade}<107:2.281+0.01\left|L_{uckGrade}-106\right|,107 \le L_{uckGrade}<109:2.291+0.011\left|L_{uckGrade}-107\right|,109 \le L_{uckGrade}<110:2.313+0.01\left|L_{uckGrade}-109\right|,110 \le L_{uckGrade}<111:2.323+0.011\left|L_{uckGrade}-110\right|,111 \le L_{uckGrade}<112:2.334+0.01\left|L_{uckGrade}-111\right|,112 \le L_{uckGrade}<113:2.344+0.011\left|L_{uckGrade}-112\right|,113 \le L_{uckGrade}<114:2.355+0.01\left|L_{uckGrade}-113\right|,114 \le L_{uckGrade}<115:2.365+0.011\left|L_{uckGrade}-114\right|,115 \le L_{uckGrade}<117:2.376+0.01\left|L_{uckGrade}-115\right|,117 \le L_{uckGrade}<118:2.396+0.011\left|L_{uckGrade}-117\right|,118 \le L_{uckGrade}<121:2.407+0.01\left|L_{uckGrade}-118\right|,121 \le L_{uckGrade}<122:2.437+0.011\left|L_{uckGrade}-121\right|,122 \le L_{uckGrade}<127:2.448+0.01\left|L_{uckGrade}-122\right|,127 \le L_{uckGrade}<128:2.498+0.011\left|L_{uckGrade}-127\right|,128 \le L_{uckGrade}<132:2.509+0.01\left|L_{uckGrade}-128\right|,132 \le L_{uckGrade}<133:2.549+0.009\left|L_{uckGrade}-132\right|,133 \le L_{uckGrade}<139:2.558+0.01\left|L_{uckGrade}-133\right|,139 \le L_{uckGrade}<140:2.618+0.009\left|L_{uckGrade}-139\right|,140 \le L_{uckGrade}<142:2.627+0.01\left|L_{uckGrade}-140\right|,142 \le L_{uckGrade}<143:2.647+0.009\left|L_{uckGrade}-142\right|,143 \le L_{uckGrade}<145:2.656+0.01\left|L_{uckGrade}-143\right|,145 \le L_{uckGrade}<146:2.676+0.009\left|L_{uckGrade}-145\right|,146 \le L_{uckGrade}<147:2.685+0.01\left|L_{uckGrade}-146\right|,147 \le L_{uckGrade}<148:2.695+0.009\left|L_{uckGrade}-147\right|,148 \le L_{uckGrade}<149:2.704+0.01\left|L_{uckGrade}-148\right|,149 \le L_{uckGrade}<150:2.714+0.009\left|L_{uckGrade}-149\right|,150 \le L_{uckGrade}<151:2.723+0.01\left|L_{uckGrade}-150\right|,151 \le L_{uckGrade}<152:2.733+0.009\left|L_{uckGrade}-151\right|,152 \le L_{uckGrade}<153:2.742+0.01\left|L_{uckGrade}-152\right|,153 \le L_{uckGrade}<155:2.752+0.009\left|L_{uckGrade}-153\right|,155 \le L_{uckGrade}<156:2.77+0.01\left|L_{uckGrade}-155\right|,156 \le L_{uckGrade}<159:2.78+0.009\left|L_{uckGrade}-156\right|,159 \le L_{uckGrade}<160:2.807+0.01\left|L_{uckGrade}-159\right|,160 \le L_{uckGrade}<174:2.817+0.009\left|L_{uckGrade}-160\right|,174 \le L_{uckGrade}<175:2.943+0.008\left|L_{uckGrade}-174\right|,175 \le L_{uckGrade}<178:2.951+0.009\left|L_{uckGrade}-175\right|,178 \le L_{uckGrade}<179:2.978+0.008\left|L_{uckGrade}-178\right|,179 \le L_{uckGrade}<181:2.986+0.009\left|L_{uckGrade}-179\right|,181 \le L_{uckGrade}<182:3.004+0.008\left|L_{uckGrade}-181\right|,182 \le L_{uckGrade}<183:3.012+0.009\left|L_{uckGrade}-182\right|,183 \le L_{uckGrade}<184:3.021+0.008\left|L_{uckGrade}-183\right|,184 \le L_{uckGrade}<185:3.029+0.009\left|L_{uckGrade}-184\right|,185 \le L_{uckGrade}<186:3.038+0.008\left|L_{uckGrade}-185\right|,186 \le L_{uckGrade}<187:3.046+0.009\left|L_{uckGrade}-186\right|,187 \le L_{uckGrade}<188:3.055+0.008\left|L_{uckGrade}-187\right|,188 \le L_{uckGrade}<189:3.063+0.009\left|L_{uckGrade}-188\right|,189 \le L_{uckGrade}<190:3.072+0.008\left|L_{uckGrade}-189\right|,190 \le L_{uckGrade}<191:3.08+0.009\left|L_{uckGrade}-190\right|,191 \le L_{uckGrade}<193:3.089+0.008\left|L_{uckGrade}-191\right|,193 \le L_{uckGrade}<194:3.105+0.009\left|L_{uckGrade}-193\right|,194 \le L_{uckGrade}<198:3.114+0.008\left|L_{uckGrade}-194\right|,198 \le L_{uckGrade}<199:3.146+0.009\left|L_{uckGrade}-198\right|,199 \le L_{uckGrade}<209:3.155+0.008\left|L_{uckGrade}-199\right|,209 \le L_{uckGrade}<210:3.235+0.007\left|L_{uckGrade}-209\right|,210 \le L_{uckGrade}<214:3.242+0.008\left|L_{uckGrade}-210\right|,214 \le L_{uckGrade}<215:3.274+0.007\left|L_{uckGrade}-214\right|,215 \le L_{uckGrade}<217:3.281+0.008\left|L_{uckGrade}-215\right|,217 \le L_{uckGrade}<218:3.297+0.007\left|L_{uckGrade}-217\right|,218 \le L_{uckGrade}<220:3.304+0.008\left|L_{uckGrade}-218\right|,220 \le L_{uckGrade}<221:3.32+0.007\left|L_{uckGrade}-220\right|,221 \le L_{uckGrade}<222:3.327+0.008\left|L_{uckGrade}-221\right|,222 \le L_{uckGrade}<223:3.335+0.007\left|L_{uckGrade}-222\right|,223 \le L_{uckGrade}<224:3.342+0.008\left|L_{uckGrade}-223\right|,224 \le L_{uckGrade}<225:3.35+0.007\left|L_{uckGrade}-224\right|,225 \le L_{uckGrade}<226:3.357+0.008\left|L_{uckGrade}-225\right|,226 \le L_{uckGrade}<228:3.365+0.007\left|L_{uckGrade}-226\right|,228 \le L_{uckGrade}<229:3.379+0.008\left|L_{uckGrade}-228\right|,229 \le L_{uckGrade}<231:3.387+0.007\left|L_{uckGrade}-229\right|,231 \le L_{uckGrade}<232:3.401+0.008\left|L_{uckGrade}-231\right|,232 \le L_{uckGrade}<237:3.409+0.007\left|L_{uckGrade}-232\right|,237 \le L_{uckGrade}<238:3.444+0.008\left|L_{uckGrade}-237\right|,238 \le L_{uckGrade}<244:3.452+0.007\left|L_{uckGrade}-238\right|,244 \le L_{uckGrade}<245:3.494+0.006\left|L_{uckGrade}-244\right|,245 \le L_{uckGrade}<250:3.5+0.007\left|L_{uckGrade}-245\right|,250 \le L_{uckGrade}<251:3.535+0.006\left|L_{uckGrade}-250\right|,251 \le L_{uckGrade}<253:3.541+0.007\left|L_{uckGrade}-251\right|,253 \le L_{uckGrade}<254:3.555+0.006\left|L_{uckGrade}-253\right|,254 \le L_{uckGrade}<256:3.561+0.007\left|L_{uckGrade}-254\right|,256 \le L_{uckGrade}<257:3.575+0.006\left|L_{uckGrade}-256\right|,257 \le L_{uckGrade}<258:3.581+0.007\left|L_{uckGrade}-257\right|,258 \le L_{uckGrade}<259:3.588+0.006\left|L_{uckGrade}-258\right|,259 \le L_{uckGrade}<260:3.594+0.007\left|L_{uckGrade}-259\right|,260 \le L_{uckGrade}<261:3.601+0.006\left|L_{uckGrade}-260\right|,261 \le L_{uckGrade}<262:3.607+0.007\left|L_{uckGrade}-261\right|,262 \le L_{uckGrade}<263:3.614+0.006\left|L_{uckGrade}-262\right|,263 \le L_{uckGrade}<264:3.62+0.007\left|L_{uckGrade}-263\right|,264 \le L_{uckGrade}<266:3.627+0.006\left|L_{uckGrade}-264\right|,266 \le L_{uckGrade}<267:3.639+0.007\left|L_{uckGrade}-266\right|,267 \le L_{uckGrade}<270:3.646+0.006\left|L_{uckGrade}-267\right|,270 \le L_{uckGrade}<271:3.664+0.007\left|L_{uckGrade}-270\right|,271 \le L_{uckGrade}<286:3.671+0.006\left|L_{uckGrade}-271\right|,286 \le L_{uckGrade}<287:3.761+0.005\left|L_{uckGrade}-286\right|,287 \le L_{uckGrade}<290:3.766+0.006\left|L_{uckGrade}-287\right|,290 \le L_{uckGrade}<291:3.784+0.005\left|L_{uckGrade}-290\right|,291 \le L_{uckGrade}<292:3.789+0.006\left|L_{uckGrade}-291\right|,292 \le L_{uckGrade}<293:3.795+0.005\left|L_{uckGrade}-292\right|,293 \le L_{uckGrade}<295:3.8+0.006\left|L_{uckGrade}-293\right|,295 \le L_{uckGrade}<296:3.812+0.005\left|L_{uckGrade}-295\right|,296 \le L_{uckGrade}<297:3.817+0.006\left|L_{uckGrade}-296\right|,297 \le L_{uckGrade}<298:3.823+0.005\left|L_{uckGrade}-297\right|,298 \le L_{uckGrade}<299:3.828+0.006\left|L_{uckGrade}-298\right|,299 \le L_{uckGrade}<301:3.834+0.005\left|L_{uckGrade}-299\right|,301 \le L_{uckGrade}<302:3.844+0.006\left|L_{uckGrade}-301\right|,302 \le L_{uckGrade}<304:3.85+0.005\left|L_{uckGrade}-302\right|,304 \le L_{uckGrade}<305:3.86+0.006\left|L_{uckGrade}-304\right|,305 \le L_{uckGrade}<308:3.866+0.005\left|L_{uckGrade}-305\right|,308 \le L_{uckGrade}<309:3.881+0.006\left|L_{uckGrade}-308\right|,309 \le L_{uckGrade}<322:3.887+0.005\left|L_{uckGrade}-309\right|,322 \le L_{uckGrade}<323:3.952+0.004\left|L_{uckGrade}-322\right|,323 \le L_{uckGrade}<326:3.956+0.005\left|L_{uckGrade}-323\right|,326 \le L_{uckGrade}<327:3.971+0.004\left|L_{uckGrade}-326\right|,327 \le L_{uckGrade}<329:3.975+0.005\left|L_{uckGrade}-327\right|,329 \le L_{uckGrade}<330:3.985+0.004\left|L_{uckGrade}-329\right|,330 \le L_{uckGrade}<331:3.989+0.005\left|L_{uckGrade}-330\right|,331 \le L_{uckGrade}<332:3.994+0.004\left|L_{uckGrade}-331\right|,332 \le L_{uckGrade}<334:3.998+0.005\left|L_{uckGrade}-332\right|,334 \le L_{uckGrade}<336:4.008+0.004\left|L_{uckGrade}-334\right|,336 \le L_{uckGrade}<337:4.016+0.005\left|L_{uckGrade}-336\right|,337 \le L_{uckGrade}<338:4.021+0.004\left|L_{uckGrade}-337\right|,338 \le L_{uckGrade}<339:4.025+0.005\left|L_{uckGrade}-338\right|,339 \le L_{uckGrade}<341:4.03+0.004\left|L_{uckGrade}-339\right|,341 \le L_{uckGrade}<342:4.038+0.005\left|L_{uckGrade}-341\right|,342 \le L_{uckGrade}<345:4.043+0.004\left|L_{uckGrade}-342\right|,345 \le L_{uckGrade}<346:4.055+0.005\left|L_{uckGrade}-345\right|,346 \le L_{uckGrade}<358:4.06+0.004\left|L_{uckGrade}-346\right|,358 \le L_{uckGrade}<359:4.108+0.003\left|L_{uckGrade}-358\right|,359 \le L_{uckGrade}<363:4.111+0.004\left|L_{uckGrade}-359\right|,363 \le L_{uckGrade}<364:4.127+0.003\left|L_{uckGrade}-363\right|,364 \le L_{uckGrade}<366:4.13+0.004\left|L_{uckGrade}-364\right|,366 \le L_{uckGrade}<367:4.138+0.003\left|L_{uckGrade}-366\right|,367 \le L_{uckGrade}<368:4.141+0.004\left|L_{uckGrade}-367\right|,368 \le L_{uckGrade}<369:4.145+0.003\left|L_{uckGrade}-368\right|,369 \le L_{uckGrade}<370:4.148+0.004\left|L_{uckGrade}-369\right|,370 \le L_{uckGrade}<371:4.152+0.003\left|L_{uckGrade}-370\right|,371 \le L_{uckGrade}<372:4.155+0.004\left|L_{uckGrade}-371\right|,372 \le L_{uckGrade}<373:4.159+0.003\left|L_{uckGrade}-372\right|,373 \le L_{uckGrade}<374:4.162+0.004\left|L_{uckGrade}-373\right|,374 \le L_{uckGrade}<375:4.166+0.003\left|L_{uckGrade}-374\right|,375 \le L_{uckGrade}<376:4.169+0.004\left|L_{uckGrade}-375\right|,376 \le L_{uckGrade}<379:4.173+0.003\left|L_{uckGrade}-376\right|,379 \le L_{uckGrade}<380:4.182+0.004\left|L_{uckGrade}-379\right|,380 \le L_{uckGrade}<383:4.186+0.003\left|L_{uckGrade}-380\right|,383 \le L_{uckGrade}<384:4.195+0.004\left|L_{uckGrade}-383\right|,384 \le L_{uckGrade}<394:4.199+0.003\left|L_{uckGrade}-384\right|,394 \le L_{uckGrade}<395:4.229+0.002\left|L_{uckGrade}-394\right|,395 \le L_{uckGrade}<399:4.231+0.003\left|L_{uckGrade}-395\right|,399 \le L_{uckGrade}<400:4.243+0.002\left|L_{uckGrade}-399\right|,400 \le L_{uckGrade}<402:4.245+0.003\left|L_{uckGrade}-400\right|,402 \le L_{uckGrade}<403:4.251+0.002\left|L_{uckGrade}-402\right|,403 \le L_{uckGrade}<405:4.253+0.003\left|L_{uckGrade}-403\right|,405 \le L_{uckGrade}<406:4.259+0.002\left|L_{uckGrade}-405\right|,406 \le L_{uckGrade}<407:4.261+0.003\left|L_{uckGrade}-406\right|,407 \le L_{uckGrade}<408:4.264+0.002\left|L_{uckGrade}-407\right|,408 \le L_{uckGrade}<409:4.266+0.003\left|L_{uckGrade}-408\right|,409 \le L_{uckGrade}<410:4.269+0.002\left|L_{uckGrade}-409\right|,410 \le L_{uckGrade}<411:4.271+0.003\left|L_{uckGrade}-410\right|,411 \le L_{uckGrade}<413:4.274+0.002\left|L_{uckGrade}-411\right|,413 \le L_{uckGrade}<414:4.278+0.003\left|L_{uckGrade}-413\right|,414 \le L_{uckGrade}<416:4.281+0.002\left|L_{uckGrade}-414\right|,416 \le L_{uckGrade}<417:4.285+0.003\left|L_{uckGrade}-416\right|,417 \le L_{uckGrade}<421:4.288+0.002\left|L_{uckGrade}-417\right|,421 \le L_{uckGrade}<422:4.296+0.003\left|L_{uckGrade}-421\right|,422 \le L_{uckGrade}<431:4.299+0.002\left|L_{uckGrade}-422\right|,431 \le L_{uckGrade}<432:4.317+0.001\left|L_{uckGrade}-431\right|,432 \le L_{uckGrade}<436:4.318+0.002\left|L_{uckGrade}-432\right|,436 \le L_{uckGrade}<437:4.326+0.001\left|L_{uckGrade}-436\right|,437 \le L_{uckGrade}<439:4.327+0.002\left|L_{uckGrade}-437\right|,439 \le L_{uckGrade}<440:4.331+0.001\left|L_{uckGrade}-439\right|,440 \le L_{uckGrade}<442:4.332+0.002\left|L_{uckGrade}-440\right|,442 \le L_{uckGrade}<443:4.336+0.001\left|L_{uckGrade}-442\right|,443 \le L_{uckGrade}<444:4.337+0.002\left|L_{uckGrade}-443\right|,444 \le L_{uckGrade}<445:4.339+0.001\left|L_{uckGrade}-444\right|,445 \le L_{uckGrade}<446:4.34+0.002\left|L_{uckGrade}-445\right|,446 \le L_{uckGrade}<447:4.342+0.001\left|L_{uckGrade}-446\right|,447 \le L_{uckGrade}<448:4.343+0.002\left|L_{uckGrade}-447\right|,448 \le L_{uckGrade}<450:4.345+0.001\left|L_{uckGrade}-448\right|,450 \le L_{uckGrade}<451:4.347+0.002\left|L_{uckGrade}-450\right|,451 \le L_{uckGrade}<453:4.349+0.001\left|L_{uckGrade}-451\right|,453 \le L_{uckGrade}<454:4.351+0.002\left|L_{uckGrade}-453\right|,454 \le L_{uckGrade}<458:4.353+0.001\left|L_{uckGrade}-454\right|,458 \le L_{uckGrade}<459:4.357+0.002\left|L_{uckGrade}-458\right|,459 \le L_{uckGrade}<467:4.359+0.001\left|L_{uckGrade}-459\right|,467 \le L_{uckGrade}<468:4.367+0\left|L_{uckGrade}-467\right|,468 \le L_{uckGrade}<473:4.367+0.001\left|L_{uckGrade}-468\right|,473 \le L_{uckGrade}<474:4.372+0\left|L_{uckGrade}-473\right|,474 \le L_{uckGrade}<476:4.372+0.001\left|L_{uckGrade}-474\right|,476 \le L_{uckGrade}<477:4.374+0\left|L_{uckGrade}-476\right|,477 \le L_{uckGrade}<479:4.374+0.001\left|L_{uckGrade}-477\right|,479 \le L_{uckGrade}<480:4.376+0\left|L_{uckGrade}-479\right|,480 \le L_{uckGrade}<481:4.376+0.001\left|L_{uckGrade}-480\right|,481 \le L_{uckGrade}<482:4.377+0\left|L_{uckGrade}-481\right|,482 \le L_{uckGrade}<483:4.377+0.001\left|L_{uckGrade}-482\right|,483 \le L_{uckGrade}<484:4.378+0\left|L_{uckGrade}-483\right|,484 \le L_{uckGrade}<485:4.378+0.001\left|L_{uckGrade}-484\right|,485 \le L_{uckGrade}<487:4.379+0\left|L_{uckGrade}-485\right|,487 \le L_{uckGrade}<488:4.379+0.001\left|L_{uckGrade}-487\right|,488 \le L_{uckGrade}<490:4.38+0\left|L_{uckGrade}-488\right|,490 \le L_{uckGrade}<491:4.38+0.001\left|L_{uckGrade}-490\right|,491 \le L_{uckGrade}<496:4.381+0\left|L_{uckGrade}-491\right|,496 \le L_{uckGrade}<497:4.381+0.001\left|L_{uckGrade}-496\right|,497 \le L_{uckGrade}<500:4.382+0\left|L_{uckGrade}-497\right|\right\}</pre>
|magicaldamagereduction=<pre>M_{agicalDamageReduction}(M_{agicResistance})=\left\{-300 \le M_{agicResistance}<-15:-5.95+0.02\left|M_{agicResistance}--300\right|,-15 \le M_{agicResistance}<10:-0.25+0.01\left|M_{agicResistance}--15\right|,10 \le M_{agicResistance}<250:0+0.003\left|M_{agicResistance}-10\right|,250 \le M_{agicResistance}<350:0.6+0.002\left|M_{agicResistance}-250\right|,350 \le M_{agicResistance}<500:0.8+0.001\left|M_{agicResistance}-350\right|\right\}</pre>
|magicaldamagereduction=<pre>M_{agicalDamageReduction}(M_{agicResistance})=\left\{-300 \le M_{agicResistance}<-15:-5.95+0.02\left|M_{agicResistance}--300\right|,-15 \le M_{agicResistance}<10:-0.25+0.01\left|M_{agicResistance}--15\right|,10 \le M_{agicResistance}<250:0+0.003\left|M_{agicResistance}-10\right|,250 \le M_{agicResistance}<350:0.6+0.002\left|M_{agicResistance}-250\right|,350 \le M_{agicResistance}<500:0.8+0.001\left|M_{agicResistance}-350\right|\right\}</pre>
|magicalinteractionspeed=<pre>M_{agicalInteractionSpeed}(W_{ill})=\left\{0 \le W_{ill}<15:-0.75+0.05\left|W_{ill}-0\right|,15 \le W_{ill}<25:0+0.07\left|W_{ill}-15\right|,25 \le W_{ill}<35:0.7+0.05\left|W_{ill}-25\right|,35 \le W_{ill}<84:1.2+0.02\left|W_{ill}-35\right|,84 \le W_{ill}<85:2.18+0.01\left|W_{ill}-84\right|,85 \le W_{ill}<86:2.19+0.03\left|W_{ill}-85\right|,86 \le W_{ill}<100:2.22+0.02\left|W_{ill}-86\right|\right\}</pre>
|magicalinteractionspeed=<pre>M_{agicalInteractionSpeed}(W_{ill})=\left\{0 \le W_{ill}<15:-0.75+0.05\left|W_{ill}-0\right|,15 \le W_{ill}<25:0+0.07\left|W_{ill}-15\right|,25 \le W_{ill}<35:0.7+0.05\left|W_{ill}-25\right|,35 \le W_{ill}<84:1.2+0.02\left|W_{ill}-35\right|,84 \le W_{ill}<85:2.18+0.01\left|W_{ill}-84\right|,85 \le W_{ill}<86:2.19+0.03\left|W_{ill}-85\right|,86 \le W_{ill}<100:2.22+0.02\left|W_{ill}-86\right|\right\}</pre>
|magicalpower=<pre>M_{agicalPower}(W_{ill})=\left\{0 \le W_{ill}<100:0+1\left|W_{ill}-0\right|\right\}</pre>
|magicalpower=<pre>M_{agicalPower}(W_{ill})=\left\{0 \le W_{ill}<100:0+1\left|W_{ill}-0\right|\right\}</pre>
|magicalpowerbonus=<pre>M_{agicalPowerBonus}(M_{agicalPower})=\left\{0 \le M_{agicalPower}<1:-0.9+0\left|M_{agicalPower}-0\right|,1 \le M_{agicalPower}<5:-0.9+0.1\left|M_{agicalPower}-1\right|,5 \le M_{agicalPower}<15:-0.5+0.05\left|M_{agicalPower}-5\right|,15 \le M_{agicalPower}<21:0+0.025\left|M_{agicalPower}-15\right|,21 \le M_{agicalPower}<40:0.15+0.02\left|M_{agicalPower}-21\right|,40 \le M_{agicalPower}<50:0.53+0.01\left|M_{agicalPower}-40\right|,50 \le M_{agicalPower}<100:0.63+0.005\left|M_{agicalPower}-50\right|\right\}</pre>
|magicalpowerbonus=<pre>M_{agicalPowerBonus}(M_{agicalPower})=\left\{0 \le M_{agicalPower}<1:-0.9+0\left|M_{agicalPower}-0\right|,1 \le M_{agicalPower}<5:-0.9+0.1\left|M_{agicalPower}-1\right|,5 \le M_{agicalPower}<15:-0.5+0.05\left|M_{agicalPower}-5\right|,15 \le M_{agicalPower}<21:0+0.025\left|M_{agicalPower}-15\right|,21 \le M_{agicalPower}<40:0.15+0.02\left|M_{agicalPower}-21\right|,40 \le M_{agicalPower}<50:0.53+0.01\left|M_{agicalPower}-40\right|,50 \le M_{agicalPower}<100:0.63+0.005\left|M_{agicalPower}-50\right|\right\}</pre>
|magicresistance=<pre>M_{agicResistance}(W_{ill})=\left\{0 \le W_{ill}<5:-20+4\left|W_{ill}-0\right|,5 \le W_{ill}<15:0+3\left|W_{ill}-5\right|,15 \le W_{ill}<20:30+4\left|W_{ill}-15\right|,20 \le W_{ill}<28:50+5\left|W_{ill}-20\right|,28 \le W_{ill}<38:90+4\left|W_{ill}-28\right|,38 \le W_{ill}<48:130+3\left|W_{ill}-38\right|,48 \le W_{ill}<58:160+2\left|W_{ill}-48\right|,58 \le W_{ill}<100:180+1\left|W_{ill}-58\right|\right\}</pre>
|magicresistance=<pre>M_{agicResistance}(W_{ill})=\left\{0 \le W_{ill}<5:-20+4\left|W_{ill}-0\right|,5 \le W_{ill}<15:0+3\left|W_{ill}-5\right|,15 \le W_{ill}<33:30+4\left|W_{ill}-15\right|,33 \le W_{ill}<48:102+3\left|W_{ill}-33\right|,48 \le W_{ill}<58:147+2\left|W_{ill}-48\right|,58 \le W_{ill}<100:167+1\left|W_{ill}-58\right|\right\}</pre>
|manualdexterity=<pre>M_{anualDexterity}(D_{exterity})=\left\{0 \le D_{exterity}<15:-0.15+0.01\left|D_{exterity}-0\right|,15 \le D_{exterity}<23:0+0.03\left|D_{exterity}-15\right|,23 \le D_{exterity}<31:0.24+0.02\left|D_{exterity}-23\right|,31 \le D_{exterity}<37:0.4+0.01\left|D_{exterity}-31\right|,37 \le D_{exterity}<45:0.46+0.005\left|D_{exterity}-37\right|,45 \le D_{exterity}<95:0.5+0.001\left|D_{exterity}-45\right|,95 \le D_{exterity}<100:0.55+0\left|D_{exterity}-95\right|\right\}</pre>
|manualdexterity=<pre>M_{anualDexterity}(D_{exterity})=\left\{0 \le D_{exterity}<15:-0.15+0.01\left|D_{exterity}-0\right|,15 \le D_{exterity}<23:0+0.03\left|D_{exterity}-15\right|,23 \le D_{exterity}<31:0.24+0.02\left|D_{exterity}-23\right|,31 \le D_{exterity}<37:0.4+0.01\left|D_{exterity}-31\right|,37 \le D_{exterity}<45:0.46+0.005\left|D_{exterity}-37\right|,45 \le D_{exterity}<95:0.5+0.001\left|D_{exterity}-45\right|,95 \le D_{exterity}<100:0.55+0\left|D_{exterity}-95\right|\right\}</pre>
|maxhealth=<pre>M_{axHealth}(S_{um})=\left\{0 \le S_{um}<10:75+3\left|S_{um}-0\right|,10 \le S_{um}<50:105+2\left|S_{um}-10\right|,50 \le S_{um}<75:185+1\left|S_{um}-50\right|,75 \le S_{um}<100:210+0.5\left|S_{um}-75\right|\right\}</pre>
|memorycapacity=<pre>M_{emoryCapacity}(K_{nowledge})=\left\{0 \le K_{nowledge}<6:0+0\left|K_{nowledge}-0\right|,6 \le K_{nowledge}<100:0+1\left|K_{nowledge}-6\right|\right\}</pre>
|memorycapacity=<pre>M_{emoryCapacity}(K_{nowledge})=\left\{0 \le K_{nowledge}<6:0+0\left|K_{nowledge}-0\right|,6 \le K_{nowledge}<100:0+1\left|K_{nowledge}-6\right|\right\}</pre>
|memoryrecovery=<pre>M_{emoryRecovery}(K_{nowledge})=\left\{0 \le K_{nowledge}<28:0.43+0.015\left|K_{nowledge}-0\right|,28 \le K_{nowledge}<35:0.85+0.05\left|K_{nowledge}-28\right|,35 \le K_{nowledge}<84:1.2+0.02\left|K_{nowledge}-35\right|,84 \le K_{nowledge}<85:2.18+0.01\left|K_{nowledge}-84\right|,85 \le K_{nowledge}<86:2.19+0.03\left|K_{nowledge}-85\right|,86 \le K_{nowledge}<100:2.22+0.02\left|K_{nowledge}-86\right|\right\}</pre>
|memoryrecovery=<pre>M_{emoryRecovery}(K_{nowledge})=\left\{0 \le K_{nowledge}<28:0.43+0.015\left|K_{nowledge}-0\right|,28 \le K_{nowledge}<35:0.85+0.05\left|K_{nowledge}-28\right|,35 \le K_{nowledge}<84:1.2+0.02\left|K_{nowledge}-35\right|,84 \le K_{nowledge}<85:2.18+0.01\left|K_{nowledge}-84\right|,85 \le K_{nowledge}<86:2.19+0.03\left|K_{nowledge}-85\right|,86 \le K_{nowledge}<100:2.22+0.02\left|K_{nowledge}-86\right|\right\}</pre>
|movespeed=<pre>M_{oveSpeed}(A_{gility})=\left\{0 \le A_{gility}<10:-10+0.5\left|A_{gility}-0\right|,10 \le A_{gility}<15:-5+1\left|A_{gility}-10\right|,15 \le A_{gility}<75:0+0.75\left|A_{gility}-15\right|,75 \le A_{gility}<100:45+0.5\left|A_{gility}-75\right|\right\}</pre>
|movespeed=<pre>M_{oveSpeed}(A_{gility})=\left\{0 \le A_{gility}<10:-10+0.5\left|A_{gility}-0\right|,10 \le A_{gility}<15:-5+1\left|A_{gility}-10\right|,15 \le A_{gility}<75:0+0.75\left|A_{gility}-15\right|,75 \le A_{gility}<100:45+0.5\left|A_{gility}-75\right|\right\}</pre>
|persuasiveness=<pre>P_{ersuasiveness}(R_{esourcefulness})=\left\{0 \le R_{esourcefulness}<35:0+1\left|R_{esourcefulness}-0\right|,35 \le R_{esourcefulness}<71:35+0.5\left|R_{esourcefulness}-35\right|,71 \le R_{esourcefulness}<99:53+0.25\left|R_{esourcefulness}-71\right|,99 \le R_{esourcefulness}<100:60+0\left|R_{esourcefulness}-99\right|\right\}</pre>
|persuasiveness=<pre>P_{ersuasiveness}(R_{esourcefulness})=\left\{0 \le R_{esourcefulness}<35:0+1\left|R_{esourcefulness}-0\right|,35 \le R_{esourcefulness}<71:35+0.5\left|R_{esourcefulness}-35\right|,71 \le R_{esourcefulness}<99:53+0.25\left|R_{esourcefulness}-71\right|,99 \le R_{esourcefulness}<100:60+0\left|R_{esourcefulness}-99\right|\right\}</pre>
|physicaldamagereduction=<pre>P_{hysicalDamageReduction}(A_{rmorRating})=\left\{-300 \le A_{rmorRating}<-3:-6.19+0.02\left|A_{rmorRating}--300\right|,-3 \le A_{rmorRating}<22:-0.25+0.01\left|A_{rmorRating}--3\right|,22 \le A_{rmorRating}<31:0+0.005\left|A_{rmorRating}-22\right|,31 \le A_{rmorRating}<42:0.045+0.004\left|A_{rmorRating}-31\right|,42 \le A_{rmorRating}<52:0.089+0.003\left|A_{rmorRating}-42\right|,52 \le A_{rmorRating}<62:0.119+0.002\left|A_{rmorRating}-52\right|,62 \le A_{rmorRating}<112:0.139+0.001\left|A_{rmorRating}-62\right|,112 \le A_{rmorRating}<175:0.189+0.002\left|A_{rmorRating}-112\right|,175 \le A_{rmorRating}<230:0.315+0.003\left|A_{rmorRating}-175\right|,230 \le A_{rmorRating}<317:0.48+0.002\left|A_{rmorRating}-230\right|,317 \le A_{rmorRating}<353:0.654+0.001\left|A_{rmorRating}-317\right|,353 \le A_{rmorRating}<368:0.69+0.001\left|A_{rmorRating}-353\right|,368 \le A_{rmorRating}<369:0.698+0\left|A_{rmorRating}-368\right|,369 \le A_{rmorRating}<370:0.698+0.001\left|A_{rmorRating}-369\right|,370 \le A_{rmorRating}<428:0.699+0.001\left|A_{rmorRating}-370\right|,428 \le A_{rmorRating}<429:0.728+-0.001\left|A_{rmorRating}-428\right|,429 \le A_{rmorRating}<450:0.727+0\left|A_{rmorRating}-429\right|,450 \le A_{rmorRating}<500:0.732+0\left|A_{rmorRating}-450\right|\right\}</pre>
|physicaldamagereduction=<pre>P_{hysicalDamageReduction}(A_{rmorRating})=\left\{-300 \le A_{rmorRating}<-3:-6.19+0.02\left|A_{rmorRating}--300\right|,-3 \le A_{rmorRating}<20:-0.25+0.01\left|A_{rmorRating}--3\right|,20 \le A_{rmorRating}<30:-0.02+0.005\left|A_{rmorRating}-20\right|,30 \le A_{rmorRating}<45:0.03+0.004\left|A_{rmorRating}-30\right|,45 \le A_{rmorRating}<65:0.09+0.003\left|A_{rmorRating}-45\right|,65 \le A_{rmorRating}<85:0.15+0.003\left|A_{rmorRating}-65\right|,85 \le A_{rmorRating}<170:0.2+0.002\left|A_{rmorRating}-85\right|,170 \le A_{rmorRating}<300:0.37+0.001\left|A_{rmorRating}-170\right|,300 \le A_{rmorRating}<353:0.565+0.001\left|A_{rmorRating}-300\right|,353 \le A_{rmorRating}<500:0.618+0.001\left|A_{rmorRating}-353\right|\right\}</pre>
|physicalpower=<pre>P_{hysicalPower}(S_{trength})=\left\{0 \le S_{trength}<100:0+1\left|S_{trength}-0\right|\right\}</pre>
|physicalpower=<pre>P_{hysicalPower}(S_{trength})=\left\{0 \le S_{trength}<100:0+1\left|S_{trength}-0\right|\right\}</pre>
|physicalpowerbonus=<pre>P_{hysicalPowerBonus}(P_{hysicalPower})=\left\{0 \le P_{hysicalPower}<5:-0.8+0.1\left|P_{hysicalPower}-0\right|,5 \le P_{hysicalPower}<7:-0.3+0.05\left|P_{hysicalPower}-5\right|,7 \le P_{hysicalPower}<11:-0.2+0.03\left|P_{hysicalPower}-7\right|,11 \le P_{hysicalPower}<15:-0.08+0.02\left|P_{hysicalPower}-11\right|,15 \le P_{hysicalPower}<50:0+0.01\left|P_{hysicalPower}-15\right|,50 \le P_{hysicalPower}<100:0.35+0.005\left|P_{hysicalPower}-50\right|\right\}</pre>
|physicalpowerbonus=<pre>P_{hysicalPowerBonus}(P_{hysicalPower})=\left\{0 \le P_{hysicalPower}<5:-0.8+0.1\left|P_{hysicalPower}-0\right|,5 \le P_{hysicalPower}<7:-0.3+0.05\left|P_{hysicalPower}-5\right|,7 \le P_{hysicalPower}<11:-0.2+0.03\left|P_{hysicalPower}-7\right|,11 \le P_{hysicalPower}<15:-0.08+0.02\left|P_{hysicalPower}-11\right|,15 \le P_{hysicalPower}<50:0+0.01\left|P_{hysicalPower}-15\right|,50 \le P_{hysicalPower}<100:0.35+0.005\left|P_{hysicalPower}-50\right|\right\}</pre>

Latest revision as of 19:13, 29 November 2024

Example

{{Stats_Data|actionspeed}}

Agility and Dexterity governs your Action Speed.

Agility gives 0.25 Action Speed Rating, and Dexterity gives 0.75 Action Speed Rating, which then get summed into a total Action Speed Rating and finally converted into Action Speed using the graph.

Action Speed Rating = Agility * 0.25 + Dexterity * 0.75


0 Action Speed Rating starts at -38% Action Speed.

  • 0 -> -38%
  • 0 to 10 = 3% each, up to -8%
  • 10 to 13 = 2% each, up to -2%
  • 13 to 25 = 1% each, up to 10%
  • 25 to 41 = 1.5% each, up to 34%
  • 41 to 50 = 1% each, up to 43%
  • 50 to 100 = 0.5% each, up to 68%

LaTeX Formula

Can be pasted into Desmos or other LaTeX editors for quick use of the equation.

Triple click to select all. Note: Some browsers will add an extra return carriage (line end) after the formula. Remove it before pasting for best results.

A_{ctionSpeed}(S_{um})=\left\{0 \le S_{um}<10:-0.38+0.03\left|S_{um}-0\right|,10 \le S_{um}<13:-0.08+0.02\left|S_{um}-10\right|,13 \le S_{um}<25:-0.02+0.01\left|S_{um}-13\right|,25 \le S_{um}<41:0.1+0.015\left|S_{um}-25\right|,41 \le S_{um}<50:0.34+0.01\left|S_{um}-41\right|,50 \le S_{um}<100:0.43+0.005\left|S_{um}-50\right|\right\}

See Example for how to use.